Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import os
import pickle as pkl
import sys
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import *
import networkx as nx
import numpy as np
import pandas as pd
from tqdm import tqdm
from ..utils import *
__all__ = [
'TraceGraphNodeFeatures',
'TraceGraphNodeReconsScores',
'TraceGraphNode',
'TraceGraphVectors',
'TraceGraph',
'TraceGraphIDManager',
'load_trace_csv',
'df_to_trace_graphs',
]
SERVICE_ID_YAML_FILE = 'service_id.yml'
OPERATION_ID_YAML_FILE = 'operation_id.yml'
@dataclass
class TraceGraphNodeFeatures(object):
__slots__ = ['span_count', 'max_latency', 'min_latency', 'avg_latency']
span_count: int # number of duplicates in the parent
avg_latency: float # for span_count == 1, avg == max == min
max_latency: float
min_latency: float
@dataclass
class TraceGraphNodeReconsScores(object):
# probability of the node
edge_logit: float
operation_logit: float
# probability of the latency
avg_latency_nstd: float # (avg_latency - avg_latency_mean) / avg_latency_std
@dataclass
class TraceGraphSpan(object):
__slots__ = [
'span_id', 'start_time', 'latency',
]
span_id: Optional[int]
start_time: Optional[datetime]
latency: float
@dataclass
class TraceGraphNode(object):
__slots__ = [
'node_id', 'service_id', 'operation_id',
'features', 'children', 'spans', 'scores',
'anomaly',
]
node_id: Optional[int] # the node id of the graph
service_id: Optional[int] # the service id
operation_id: int # the operation id
features: TraceGraphNodeFeatures # the node features
children: List['TraceGraphNode'] # children nodes
spans: Optional[List[TraceGraphSpan]] # detailed spans information (from the original data)
scores: Optional[TraceGraphNodeReconsScores]
anomaly: Optional[int] # 1: drop anomaly; 2: latency anomaly; 3: service type anomaly
def __eq__(self, other):
return other is self
def __hash__(self):
return id(self)
@staticmethod
def new_sampled(node_id: int,
operation_id: int,
features: TraceGraphNodeFeatures,
scores: Optional[TraceGraphNodeReconsScores] = None
):
return TraceGraphNode(
node_id=node_id,
service_id=None,
operation_id=operation_id,
features=features,
children=[],
spans=None,
scores=scores,
anomaly=None,
)
def iter_bfs(self,
depth: int = 0,
with_parent: bool = False
) -> Generator[
Union[
Tuple[int, 'TraceGraphNode'],
Tuple[int, 'TraceGraphNode', 'TraceGraphNode']
],
None,
None
]:
"""Iterate through the nodes in BFS order."""
if with_parent:
depth = depth
level = [(self, None, 0)]
while level:
next_level: List[Tuple[TraceGraphNode, TraceGraphNode, int]] = []
for nd, parent, idx in level:
yield depth, idx, nd, parent
for c_idx, child in enumerate(nd.children):
next_level.append((child, nd, c_idx))
depth += 1
level = next_level
else:
depth = depth
level = [self]
while level:
next_level: List[TraceGraphNode] = []
for nd in level:
yield depth, nd
next_level.extend(nd.children)
depth += 1
level = next_level
def count_nodes(self) -> int:
ret = 0
for _ in self.iter_bfs():
ret += 1
return ret
@dataclass
class TraceGraphVectors(object):
"""Cached result of `TraceGraph.graph_vectors()`."""
__slots__ = [
'u', 'v',
'node_type',
'node_depth', 'node_idx',
'span_count', 'avg_latency', 'max_latency', 'min_latency',
'node_features',
]
# note that it is guaranteed that u[i] < v[i], i.e., upper triangle matrix
u: np.ndarray
v: np.ndarray
# node type
node_type: np.ndarray
# node depth
node_depth: np.ndarray
# node idx
node_idx: np.ndarray
# node feature
span_count: np.ndarray
avg_latency: np.ndarray
max_latency: np.ndarray
min_latency: np.ndarray
@dataclass
class TraceGraph(object):
__slots__ = [
'version',
'trace_id', 'parent_id', 'root', 'node_count', 'max_depth', 'data',
]
version: int # version control
trace_id: Optional[Tuple[int, int]]
parent_id: Optional[int]
root: TraceGraphNode
node_count: Optional[int]
max_depth: Optional[int]
data: Dict[str, Any] # any data about the graph
@staticmethod
def default_version() -> int:
return 0x2
@staticmethod
def new_sampled(root: TraceGraphNode, node_count: int, max_depth: int):
return TraceGraph(
version=TraceGraph.default_version(),
trace_id=None,
parent_id=None,
root=root,
node_count=node_count,
max_depth=max_depth,
data={},
)
@property
def edge_count(self) -> Optional[int]:
if self.node_count is not None:
return self.node_count - 1
def iter_bfs(self,
with_parent: bool = False
):
"""Iterate through the nodes in BFS order."""
yield from self.root.iter_bfs(with_parent=with_parent)
def merge_spans_and_assign_id(self):
"""
Merge spans with the same (service, operation) under the same parent,
and re-assign node IDs.
"""
node_count = 0
max_depth = 0
for depth, parent in self.iter_bfs():
max_depth = max(max_depth, depth)
# assign ID to this node
parent.node_id = node_count
node_count += 1
# merge the children of this node
children = []
for child in sorted(parent.children, key=lambda o: o.operation_id):
if children and children[-1].operation_id == child.operation_id:
prev_child = children[-1]
# merge the features
f1, f2 = prev_child.features, child.features
f1.span_count += f2.span_count
f1.avg_latency += (f2.avg_latency - f1.avg_latency) * (f2.span_count / f1.span_count)
f1.max_latency = max(f1.max_latency, f2.max_latency)
f1.min_latency = min(f1.min_latency, f2.min_latency)
# merge the children
if child.children:
if prev_child.children:
prev_child.children.extend(child.children)
else:
prev_child.children = child.children
# merge the spans
if child.spans:
if prev_child.spans:
prev_child.spans.extend(child.spans)
else:
prev_child.spans = child.spans
else:
children.append(child)
# re-assign the merged children
parent.children = children
# record node count and depth
self.node_count = node_count
self.max_depth = max_depth
def assign_node_id(self):
"""Assign node IDs to the graph nodes by pre-root order."""
node_count = 0
max_depth = 0
for depth, node in self.iter_bfs():
max_depth = max(max_depth, depth)
# assign id to this node
node.node_id = node_count
node_count += 1
# record node count and depth
self.node_count = node_count
self.max_depth = max_depth
def graph_vectors(self):
# edge index
u = np.empty([self.edge_count], dtype=np.int64)
v = np.empty([self.edge_count], dtype=np.int64)
# node type
node_type = np.zeros([self.node_count], dtype=np.int64)
# node depth
node_depth = np.zeros([self.node_count], dtype=np.int64)
# node idx
node_idx = np.zeros([self.node_count], dtype=np.int64)
# node feature
span_count = np.zeros([self.node_count], dtype=np.int64)
avg_latency = np.zeros([self.node_count], dtype=np.float32)
max_latency = np.zeros([self.node_count], dtype=np.float32)
min_latency = np.zeros([self.node_count], dtype=np.float32)
# X = np.zeros([self.node_count, x_dim], dtype=np.float32)
edge_idx = 0
for depth, idx, node, parent in self.iter_bfs(with_parent=True):
j = node.node_id
feat = node.features
# node type
node_type[j] = node.operation_id
# node depth
node_depth[j] = depth
# node idx
node_idx[j] = idx
# node feature
span_count[j] = feat.span_count
avg_latency[j] = feat.avg_latency
max_latency[j] = feat.max_latency
min_latency[j] = feat.min_latency
# X[parent.node_id, parent.operation_id] = 1 # one-hot encoded node feature
# edge index
for child in node.children:
u[edge_idx] = node.node_id
v[edge_idx] = child.node_id
edge_idx += 1
if len(u) != self.edge_count:
raise ValueError(f'`len(u)` != `self.edge_count`: {len(u)} != {self.edge_count}')
return TraceGraphVectors(
# edge index
u=u, v=v,
# node type
node_type=node_type,
# node depth
node_depth=node_depth,
# node idx
node_idx=node_idx,
# node feature
span_count=span_count,
avg_latency=avg_latency,
max_latency=max_latency,
min_latency=min_latency,
)
def networkx_graph(self, id_manager: 'TraceGraphIDManager') -> nx.Graph:
gv = self.graph_vectors()
self_nodes = {nd.node_id: nd for _, nd in self.iter_bfs()}
g = nx.Graph()
# graph
for k, v in self.data.items():
g.graph[k] = v
# nodes
g.add_nodes_from(range(self.node_count))
# edges
g.add_edges_from([(i, j) for i, j in zip(gv.u, gv.v)])
# node features
for i in range(len(gv.node_type)):
nd = g.nodes[i]
nd['node_type'] = gv.node_type[i]
nd['operation'] = id_manager.operation_id.reverse_map(gv.node_type[i])
for attr in TraceGraphNodeFeatures.__slots__:
nd[attr] = getattr(gv, attr)[i]
if self_nodes[i].scores:
nd['avg_latency_nstd'] = self_nodes[i].scores.avg_latency_nstd
return g
def to_bytes(self, protocol: int = pkl.DEFAULT_PROTOCOL) -> bytes:
return pkl.dumps(self, protocol=protocol)
@staticmethod
def from_bytes(content: bytes) -> 'TraceGraph':
r = pkl.loads(content)
# for deserializing old versions of TraceGraph
if not hasattr(r, 'version'):
r.version = 0x0
if r.version < 0x1: # upgrade 0x0 => 0x2
for _, nd in r.root.iter_bfs():
nd.scores = None
nd.anomaly = None
r.version = 0x2
if r.version < 0x2: # upgrade 0x1 => 0x2
for _, nd in r.root.iter_bfs():
nd.anomaly = None
r.version = 0x2
return r
def deepcopy(self) -> 'TraceGraph':
return TraceGraph.from_bytes(self.to_bytes())
@dataclass
class TempGraphNode(object):
__slots__ = ['trace_id', 'parent_id', 'node']
trace_id: Tuple[int, int]
parent_id: int
node: 'TraceGraphNode'
class TraceGraphIDManager(object):
__slots__ = ['root_dir', 'service_id', 'operation_id']
root_dir: str
service_id: IDAssign
operation_id: IDAssign
def __init__(self, root_dir: str):
self.root_dir = os.path.abspath(root_dir)
self.service_id = IDAssign(os.path.join(self.root_dir, SERVICE_ID_YAML_FILE))
self.operation_id = IDAssign(os.path.join(self.root_dir, OPERATION_ID_YAML_FILE))
def __enter__(self):
self.service_id.__enter__()
self.operation_id.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.service_id.__exit__(exc_type, exc_val, exc_tb)
self.operation_id.__exit__(exc_type, exc_val, exc_tb)
@property
def num_operations(self) -> int:
return len(self.operation_id)
def dump_to(self, output_dir: str):
self.service_id.dump_to(os.path.join(output_dir, SERVICE_ID_YAML_FILE))
self.operation_id.dump_to(os.path.join(output_dir, OPERATION_ID_YAML_FILE))
def load_trace_csv(input_path: str, is_test: bool=False) -> pd.DataFrame:
if is_test:
dtype = {
'traceIdHigh': int,
'traceIdLow': int,
'spanId': int,
'parentSpanId': int,
'serviceName': str,
'operationName': str,
'startTime': str,
'duration': float,
'nanosecond': int,
'DBhash': int,
'nodeLatencyLabel': int,
'graphLatencyLabel': int,
'graphStructureLabel': int
}
else:
dtype = {
'traceIdHigh': int,
'traceIdLow': int,
'spanId': int,
'parentSpanId': int,
'serviceName': str,
'operationName': str,
'startTime': str,
'duration': float,
'nanosecond': int,
'DBhash': int,
}
return pd.read_csv(
input_path,
engine='c',
usecols=list(dtype),
dtype=dtype
)
def df_to_trace_graphs(df: pd.DataFrame,
id_manager: TraceGraphIDManager,
test_label: int = None,
min_node_count: int = 2,
max_node_count: int = 32,
summary_file: Optional[str] = None,
merge_spans: bool = False,
) -> List[TraceGraph]:
summary = []
trace_spans = {}
df = df[df['DBhash'] == 0]
# read the spans
with id_manager:
for row in tqdm(df.itertuples(), desc='Read spans', total=len(df)):
graph_label = 0
if test_label is not None:
if row.graphStructureLabel != 0:
graph_label = 1
elif row.graphLatencyLabel != 0:
graph_label = 2
if graph_label != test_label:
continue
if row.serviceName not in id_manager.service_id._mapping:
print(row.serviceName, ": Service not in file!")
continue
if f'{row.serviceName}/{row.operationName}' not in id_manager.operation_id._mapping:
print(f'{row.serviceName}/{row.operationName}', ": Operation not in file!")
continue
trace_id = (row.traceIdHigh, row.traceIdLow)
span_dict = trace_spans.get(trace_id, None)
if span_dict is None:
trace_spans[trace_id] = span_dict = {}
span_latency = row.duration
span_dict[row.spanId] = TempGraphNode(
trace_id=trace_id,
parent_id=row.parentSpanId,
node=TraceGraphNode(
node_id=None,
service_id=id_manager.service_id.get_or_assign(row.serviceName),
operation_id=id_manager.operation_id.get_or_assign(f'{row.serviceName}/{row.operationName}'),
features=TraceGraphNodeFeatures(
span_count=1,
avg_latency=span_latency,
max_latency=span_latency,
min_latency=span_latency,
),
children=[],
spans=[
TraceGraphSpan(
span_id=row.spanId,
start_time=(
datetime.strptime(row.startTime, '%Y-%m-%d %H:%M:%S') +
timedelta(microseconds=row.nanosecond / 1_000)
),
latency=span_latency,
),
],
scores=None,
anomaly=None,
)
)
summary.append(f'Span count: {len(trace_spans)}')
# construct the traces
trace_graphs = []
if test_label is None or test_label == 0:
graph_data = {}
elif test_label == 1:
graph_data = {
'is_anomaly': True,
'anomaly_type': 'drop'
}
else:
graph_data = {
'is_anomaly': True,
'anomaly_type': 'latency'
}
for _, trace in tqdm(trace_spans.items(), total=len(trace_spans), desc='Build graphs'):
nodes = sorted(
trace.values(),
key=(lambda nd: (nd.node.service_id, nd.node.operation_id, nd.node.spans[0].start_time))
)
for nd in nodes:
parent_id = nd.parent_id
if (parent_id == 0) or (parent_id not in trace):
# if only a certain service is taken from the database, then just the sub-trees
# of a trace are obtained, which leads to orphan nodes (parent_id != 0 and not in trace
trace_graphs.append(TraceGraph(
version=TraceGraph.default_version(),
trace_id=nd.trace_id,
parent_id=nd.parent_id,
root=nd.node,
node_count=None,
max_depth=None,
data=graph_data,
))
else:
trace[parent_id].node.children.append(nd.node)
# merge spans and assign id
if merge_spans:
for trace in tqdm(trace_graphs, desc='Merge spans and assign node id'):
trace.merge_spans_and_assign_id()
else:
for trace in tqdm(trace_graphs, desc='Assign node id'):
trace.assign_node_id()
# gather the final results
ret = []
too_small = 0
too_large = 0
for trace in trace_graphs:
if trace.node_count < min_node_count:
too_small += 1
elif trace.node_count > max_node_count:
too_large += 1
else:
ret.append(trace)
summary.append(f'Imported graph: {len(trace_graphs)}; dropped graph: too small = {too_small}, too large = {too_large}')
if summary_file:
with open(summary_file, 'w', encoding='utf-8') as f:
f.write('\n'.join(summary) + '\n')
else:
print('\n'.join(summary), file=sys.stderr)
return ret