-
由 openaiops 创作于07a0fc69
tensor_utils.py 7.45 KiB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from typing import *
import dgl
import numpy as np
import torch
from tensorkit import tensor as T
from tracegnn.models.trace_vae.constants import *
from tracegnn.models.trace_vae.types import *
from tracegnn.utils.array_buffer import ArrayBuffer
__all__ = [
'latency_onehot_to_mask',
'edge_logits_by_dot_product',
'dense_to_triu',
'triu_to_dense',
'dense_triu_adj',
'pad_node_feature',
'get_moments',
'node_count_mask',
'collect_operation_id',
'collect_latency_std',
'collect_latency_reldiff',
'collect_p_node_count',
'collect_p_edge',
]
def latency_onehot_to_mask(onehot: T.Tensor) -> T.Tensor:
"""
>>> onehot = T.as_tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> T.to_numpy(latency_onehot_to_mask(onehot))
array([[1, 0, 0],
[1, 1, 0],
[1, 1, 1]])
>>> T.to_numpy(latency_onehot_to_mask(T.cast(onehot, dtype=T.float32)))
array([[1., 0., 0.],
[1., 1., 0.],
[1., 1., 1.]], dtype=float32)
"""
origin_dtype = T.get_dtype(onehot)
onehot = T.as_tensor(onehot, dtype=T.boolean)
shape = T.shape(onehot)
right = shape[-1] - 1
mask = T.full(shape, False, dtype=T.boolean)
mask[..., right] = onehot[..., right]
while right > 0:
old_right = right
right -= 1
mask[..., right] = T.logical_or(mask[..., old_right], onehot[..., right])
return T.cast(mask, dtype=origin_dtype)
def edge_logits_by_dot_product(h: T.Tensor) -> T.Tensor:
left = h
right = T.swap_axes(h, -1, -2)
return T.matmul(left, right)
def triu_mask(node_count: int) -> T.Tensor:
return torch.triu(T.full([node_count, node_count], True, T.boolean), 1)
def dense_to_triu(x: T.Tensor, node_count: int) -> T.Tensor:
mask = triu_mask(node_count)
shape = T.shape(x)
return T.reshape(x, shape[:-2] + [-1])[..., mask.reshape(-1)]
def triu_to_dense(x: T.Tensor,
node_count: int,
pad_value: Union[int, float] = 0) -> T.Tensor:
mask = triu_mask(node_count).reshape(-1)
ret = T.full([node_count * node_count], pad_value, dtype=T.get_dtype(x))
ret[mask] = x
return T.reshape(ret, [node_count, node_count])
def dense_triu_adj(g: dgl.DGLGraph, node_count: int, reverse: bool = False) -> T.Tensor:
adj = T.zeros([node_count, node_count], dtype=T.float32)
u, v = g.edges()
if reverse:
v, u = u, v
adj[u, v] = 1
# adj = to_dense_adj(
# T.stack([u, v], axis=0),
# max_num_nodes=node_count
# )
return dense_to_triu(adj, node_count)
def pad_node_feature(G: TraceGraphBatch,
feature_name: str,
max_node_count: int = MAX_NODE_COUNT):
# inspect graph count
graph_count = len(G.dgl_graphs)
# inspect features
vec = G.dgl_batch.ndata[feature_name]
value_shape = T.shape(vec)[1:]
dtype = T.get_dtype(vec)
device = T.get_device(vec)
# todo: whether or not it's better to use concat instead of copying into a new tensor?
with T.no_grad():
ret = T.zeros(
[graph_count, max_node_count] + value_shape,
dtype=dtype,
device=device,
)
for i in range(graph_count):
vec = G.dgl_graphs[i].ndata[feature_name]
ret[i, :T.shape(vec)[0]] = vec
return ret
def get_moments(x,
axis: Optional[List[int]] = None,
clip_var: bool = False,
) -> Tuple[T.Tensor, T.Tensor]:
mean = T.reduce_mean(x, axis=axis)
var = T.reduce_mean(x ** 2, axis=axis) - mean ** 2
if clip_var:
var = T.maximum(var, dtype=T.get_dtype(var))
return mean, var
def node_count_mask(node_count,
max_node_count: int,
dtype: Optional[str] = None) -> T.Tensor:
h = T.arange(0, max_node_count, dtype=T.get_dtype(node_count))
node_count = T.expand_dim(node_count, axis=-1)
h = h < node_count
if dtype is not None:
h = T.cast(h, dtype)
return h
def collect_operation_id(buf, chain, mask=None):
if 'node_type' in chain.p:
node_count = T.to_numpy(chain.p['node_count'].tensor)
node_type = chain.p['node_type'].tensor
if len(T.shape(node_type)) == 3:
node_type = node_type[0, ...]
node_type = T.to_numpy(node_type)
if mask is None:
for i, k in enumerate(node_count):
buf.extend(node_type[i, :k])
else:
for i, (k, m) in enumerate(zip(node_count, mask)):
if m:
buf.extend(node_type[i, :k])
def collect_latency_std(buf, chain, mask=None):
if 'latency' in chain.p:
node_count = T.to_numpy(chain.p['node_count'].tensor)
latency_std = chain.p['latency'].distribution.base_distribution.std
if len(T.shape(latency_std)) == 4:
latency_std = latency_std[0, ...]
latency_std = T.to_numpy(latency_std)
if mask is None:
for i, k in enumerate(node_count):
buf.extend(latency_std[i, :k, 0])
else:
for i, (k, m) in enumerate(zip(node_count, mask)):
if m:
buf.extend(latency_std[i, :k, 0])
def collect_p_node_count(buf, chain, mask=None):
node_count = chain.p['node_count'].distribution.probs[0]
truth_node_count = chain.p['node_count'].tensor.unsqueeze(1)
node_count_p = torch.gather(node_count, 1, truth_node_count).squeeze(-1)
if mask is None:
buf.extend(T.to_numpy(node_count_p))
else:
buf.extend(T.to_numpy(node_count_p)[mask])
def collect_p_edge(buf: ArrayBuffer, chain, mask=None):
# prob = np.exp(T.to_numpy(chain.p.log_prob('adj'))[0])
node_count = T.to_numpy(chain.p['node_count'].tensor)
p_edge = chain.p['adj'].distribution.probs[0]
truth_p_edge = chain.p['adj'].tensor
if mask is None:
for i in range(p_edge.shape[0]):
cur_p_edge = T.to_numpy(triu_to_dense(p_edge[i], MAX_NODE_COUNT))[:node_count[i], :node_count[i]]
cur_truth = T.to_numpy(triu_to_dense(truth_p_edge[i], MAX_NODE_COUNT))[:node_count[i], :node_count[i]]
buf.extend(np.abs((1.0 - cur_truth) - cur_p_edge).reshape(-1))
else:
for i, m in enumerate(mask):
if m:
cur_p_edge = T.to_numpy(triu_to_dense(p_edge[i], MAX_NODE_COUNT))[:node_count[i], :node_count[i]]
cur_truth = T.to_numpy(triu_to_dense(truth_p_edge[i], MAX_NODE_COUNT))[:node_count[i], :node_count[i]]
buf.extend(np.abs((1.0 - cur_truth) - cur_p_edge).reshape(-1))
def collect_latency_reldiff(buf, chain, mask=None, abs=True):
def collect_dist_val(attr=None):
if attr is None:
v = chain.p['latency'].tensor
else:
v = getattr(chain.p['latency'].distribution.base_distribution, attr)
if len(T.shape(v)) == 4:
v = v[0, ...]
return T.to_numpy(v[..., 0])
if 'latency' in chain.p:
node_count = T.to_numpy(chain.p['node_count'].tensor)
latency = collect_dist_val()
latency_mean = collect_dist_val('mean')
latency_std = collect_dist_val('std')
rel_diff = (latency - latency_mean) / np.maximum(latency_std, 1e-7)
if abs:
rel_diff = np.abs(rel_diff)
if mask is None:
for i, k in enumerate(node_count):
buf.extend(rel_diff[i, :k])
else:
for i, (k, m) in enumerate(zip(node_count, mask)):
if m:
buf.extend(rel_diff[i, :k])