Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import json
import math
import random
import shutil
import traceback
from enum import Enum
from functools import wraps
from typing import *
import os
import sys
import mltk
import tensorkit as tk
import numpy as np
import torch
import click
from tensorkit import tensor as T
from tensorkit.examples import utils
from tensorkit.train import Checkpoint
from tracegnn.data import *
from tracegnn.models.trace_vae.evaluation import *
from tracegnn.models.trace_vae.graph_utils import *
from tracegnn.models.trace_vae.tensor_utils import *
from tracegnn.models.trace_vae.types import *
from tracegnn.models.trace_vae.model import *
from tracegnn.models.trace_vae.dataset import *
from tracegnn.utils import *
class NANLossError(Exception):
def __init__(self, epoch):
super().__init__(epoch)
@property
def epoch(self) -> Optional[int]:
return self.args[0]
def __str__(self):
return f'NaN loss encountered at epoch {self.epoch}'
class OptimizerType(str, Enum):
ADAM = 'adam'
RMSPROP = 'rmsprop'
class ExpConfig(mltk.Config):
model: TraceVAEConfig = TraceVAEConfig()
device: Optional[str] = 'cpu'
seed: Optional[int] = 0
class train(mltk.Config):
max_epoch: int = 60
struct_pretrain_epochs: Optional[int] = 40 # number of epochs to pre-train the struct_vae
ckpt_epoch_freq: Optional[int] = 5
test_epoch_freq: Optional[int] = 5
latency_hist_epoch_freq: Optional[int] = 10
latency_std_hist_epoch_freq: Optional[int] = 5
use_early_stopping: bool = False
val_epoch_freq: Optional[int] = 2
kl_beta: float = 1.0
warm_up_epochs: Optional[int] = None # number of epochs to warm-up the prior (KLD)
l2_reg: float = 0.0001
z_unit_ball_reg: Optional[float] = None
z2_unit_ball_reg: Optional[float] = None
init_batch_size: int = 64
batch_size: int = 64
val_batch_size: int = 64
optimizer: OptimizerType = OptimizerType.RMSPROP
initial_lr: float = 0.001
lr_anneal_ratio: float = 0.1
lr_anneal_epochs: int = 30
clip_norm: Optional[float] = None
global_clip_norm: Optional[float] = 10 # important for numerical stability
test_n_z: int = 10
num_plot_samples: int = 20
class test(mltk.Config):
batch_size: int = 64
eval_n_z: int = 10
use_biased: bool = True
latency_log_prob_weight: bool = True
clip_nll: Optional[float] = 100_000
class report(mltk.Config):
html_ext: str = '.html.gz'
class dataset(mltk.Config):
root_dir: str = os.path.abspath('./data/processed')
def main(exp: mltk.Experiment[ExpConfig]):
# config
config = exp.config
# set random seed to encourage reproducibility (does it really work?)
if config.seed is not None:
T.random.set_deterministic(True)
T.random.seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
# Load data
id_manager = TraceGraphIDManager(os.path.join(config.dataset.root_dir, 'id_manager'))
latency_range = TraceGraphLatencyRangeFile(os.path.join(config.dataset.root_dir, 'id_manager'))
train_db = TraceGraphDB(BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'train')))
val_db = TraceGraphDB(BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'val')))
test_db = TraceGraphDB(
BytesMultiDB(
BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'test')),
BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'test-drop')),
BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'test-latency')),
)
)
train_stream = TraceGraphDataStream(
train_db, id_manager=id_manager, batch_size=config.train.batch_size,
shuffle=True, skip_incomplete=False,
)
val_stream = TraceGraphDataStream(
val_db, id_manager=id_manager, batch_size=config.train.val_batch_size,
shuffle=False, skip_incomplete=False,
)
test_stream = TraceGraphDataStream(
test_db, id_manager=id_manager, batch_size=config.test.batch_size,
shuffle=False, skip_incomplete=False,
)
utils.print_experiment_summary(
exp,
train_data=train_stream,
val_data=val_stream,
test_data=test_stream
)
print('Train Data:', train_db)
print('Val Data:', val_db)
print('Test Data:', test_db)
# build the network
vae: TraceVAE = TraceVAE(
config.model,
id_manager.num_operations,
)
vae = vae.to(T.current_device())
params, param_names = utils.get_params_and_names(vae)
utils.print_parameters_summary(params, param_names)
print('')
mltk.print_with_time('Network constructed.')
# define the training method for a certain model part
def train_part(params, start_epoch, max_epoch, latency_only, do_final_eval):
# util to ensure all installed hooks will only run within this context
in_context = [True]
def F(func):
@wraps(func)
def wrapper(*args, **kwargs):
if in_context[0]:
return func(*args, **kwargs)
return wrapper
# the train procedure
try:
# buffer to collect stds of each p(latency|z)
latency_std = {}
for key in ('train', 'val', 'test_normal', 'test_drop', 'test_latency'):
latency_std[key] = ArrayBuffer(81920)
def should_collect_latency_std():
return (
config.train.latency_std_hist_epoch_freq and
loop.epoch % config.train.latency_std_hist_epoch_freq == 0
)
def clear_std_buf():
for buf in latency_std.values():
buf.clear()
# the initialization function
def initialize():
G = TraceGraphBatch(
id_manager=id_manager,
latency_range=latency_range,
trace_graphs=train_db.sample_n(config.train.init_batch_size),
)
chain = vae.q(G).chain(
vae.p,
G=G,
)
loss = chain.vi.training.sgvb(reduction='mean')
mltk.print_with_time(f'Network initialized: loss = {T.to_numpy(loss)}')
# the train functions
def on_train_epoch_begin():
# set train mode
if latency_only:
tk.layers.set_eval_mode(vae)
tk.layers.set_train_mode(vae.latency_vae)
else:
tk.layers.set_train_mode(vae)
# clear std buffer
clear_std_buf()
def train_step(trace_graphs):
G = TraceGraphBatch(
id_manager=id_manager,
latency_range=latency_range,
trace_graphs=trace_graphs,
)
chain = vae.q(G).chain(
vae.p,
G=G,
)
# collect the latency std
if should_collect_latency_std():
collect_latency_std(latency_std['train'], chain)
# collect the log likelihoods
p_obs = []
p_latent = []
q_latent = []
for name in chain.p:
if name in chain.q:
q_latent.append(chain.q[name].log_prob())
p_latent.append(chain.p[name].log_prob())
else:
# print(name, chain.p[name].log_prob().mean())
p_obs.append(chain.p[name].log_prob())
# get E[log p(x|z)] and KLD[q(z|x)||p(z)]
recons = T.reduce_mean(T.add_n(p_obs))
kl = T.reduce_mean(T.add_n(q_latent) - T.add_n(p_latent))
# KL beta
beta = config.train.kl_beta
if config.train.warm_up_epochs and loop.epoch < config.train.warm_up_epochs:
beta = beta * (loop.epoch / config.train.warm_up_epochs)
loss = beta * kl - recons
# l2 regularization
if config.train.l2_reg:
l2_params = []
for p, n in zip(params, param_names):
if 'bias' not in n:
l2_params.append(p)
loss = loss + config.train.l2_reg * T.nn.l2_regularization(l2_params)
# unit ball regularization
def add_unit_ball_reg(l, t, reg):
if reg is not None:
ball_mean, ball_var = get_moments(t, axis=[-1])
l = l + reg * (
T.reduce_mean(ball_mean ** 2) +
T.reduce_mean((ball_var - 1) ** 2)
)
return l
loss = add_unit_ball_reg(loss, chain.q['z'].tensor, config.train.z_unit_ball_reg)
if 'z2' in chain.q:
loss = add_unit_ball_reg(loss, chain.q['z2'].tensor, config.train.z2_unit_ball_reg)
# check and return the metrics
loss_val = T.to_numpy(loss)
if math.isnan(loss_val):
raise NANLossError(loop.epoch)
return {'loss': loss, 'recons': recons, 'kl': kl}
# the validation function
def validate():
tk.layers.set_eval_mode(vae)
def val_step(trace_graphs):
with T.no_grad():
G = TraceGraphBatch(
id_manager=id_manager,
latency_range=latency_range,
trace_graphs=trace_graphs,
)
chain = vae.q(G).chain(
vae.p,
G=G,
)
# collect the latency std
if should_collect_latency_std():
collect_latency_std(latency_std['val'], chain)
loss = chain.vi.training.sgvb()
return {'loss': T.to_numpy(T.reduce_mean(loss))}
val_loop = loop.validation()
result_dict = val_loop.run(val_step, val_stream)
result_dict = {
f'val_{k}': v
for k, v in result_dict.items()
}
summary_cb.update_metrics(result_dict)
# the evaluation function
def evaluate(n_z, eval_loop, eval_stream, epoch, use_embeddings=False,
plot_latency_hist=False):
# latency_hist_file
latency_hist_file = None
if plot_latency_hist:
latency_hist_file = exp.make_parent(f'./plotting/latency-sample/{epoch}.jpg')
# do evaluation
tk.layers.set_eval_mode(vae)
with T.no_grad():
kw = {}
if should_collect_latency_std():
kw['latency_std_dict_out'] = latency_std
kw['latency_dict_prefix'] = 'test_'
result_dict = do_evaluate_nll(
test_stream=eval_stream,
vae=vae,
id_manager=id_manager,
latency_range=latency_range,
n_z=n_z,
use_biased=config.test.use_biased,
latency_log_prob_weight=config.test.latency_log_prob_weight,
test_loop=eval_loop,
summary_writer=summary_cb,
clip_nll=config.test.clip_nll,
use_embeddings=use_embeddings,
latency_hist_file=latency_hist_file,
**kw,
)
with open(exp.make_parent(f'./result/test-anomaly/{epoch}.json'), 'w', encoding='utf-8') as f:
f.write(json.dumps(result_dict))
eval_loop.add_metrics(**result_dict)
def save_model(epoch=None):
epoch = epoch or loop.epoch
torch.save(vae.state_dict(), exp.make_parent(f'models/{epoch}.pt'))
# final evaluation
if do_final_eval:
tk.layers.set_eval_mode(vae)
# save the final model
save_model('final')
clear_std_buf()
evaluate(
n_z=config.test.eval_n_z,
eval_loop=mltk.TestLoop(),
eval_stream=test_stream,
epoch='final',
use_embeddings=True,
plot_latency_hist=True,
)
else:
# set train mode at the beginning of each epoch
loop.on_epoch_begin.do(F(on_train_epoch_begin))
# the optimizer and learning rate scheduler
if config.train.optimizer == OptimizerType.ADAM:
optimizer = tk.optim.Adam(params)
elif config.train.optimizer == OptimizerType.RMSPROP:
optimizer = tk.optim.RMSprop(params)
def update_lr():
n_cycles = int(
loop.epoch // # (loop.epoch - start_epoch) //
config.train.lr_anneal_epochs
)
lr_discount = config.train.lr_anneal_ratio ** n_cycles
optimizer.set_lr(config.train.initial_lr * lr_discount)
update_lr()
loop.on_epoch_end.do(F(update_lr))
# install the validation function and early-stopping
if config.train.val_epoch_freq:
loop.run_after_every(
F(validate),
epochs=config.train.val_epoch_freq,
)
# install the evaluation function during training
if config.train.test_epoch_freq:
loop.run_after_every(
F(lambda: evaluate(
n_z=config.train.test_n_z,
eval_loop=loop.test(),
eval_stream=test_stream,
epoch=loop.epoch,
plot_latency_hist=(
config.train.latency_hist_epoch_freq and
loop.epoch % config.train.latency_hist_epoch_freq == 0
)
)),
epochs=config.train.test_epoch_freq,
)
# install the plot and sample functions during training
def after_epoch():
save_model()
loop.run_after_every(F(after_epoch), epochs=1)
# train the model
tk.layers.set_eval_mode(vae)
on_train_epoch_begin()
initialize()
utils.fit_model(
loop=loop,
optimizer=optimizer,
fn=train_step,
stream=train_stream,
clip_norm=config.train.clip_norm,
global_clip_norm=config.train.global_clip_norm,
# pass to `loop.run()`
limit=max_epoch,
)
finally:
in_context = [False]
# the train loop
loop = mltk.TrainLoop(max_epoch=config.train.max_epoch)
# checkpoint
ckpt = Checkpoint(vae=vae)
loop.add_callback(mltk.callbacks.AutoCheckpoint(
ckpt,
root_dir=exp.make_dirs('./checkpoint'),
epoch_freq=config.train.ckpt_epoch_freq,
max_checkpoints_to_keep=10,
))
# early-stopping
if config.train.val_epoch_freq and config.train.use_early_stopping:
loop.add_callback(mltk.callbacks.EarlyStopping(
checkpoint=ckpt,
root_dir=exp.abspath('./early-stopping'),
metric_name='val_loss',
))
# the summary writer
summary_cb = SummaryCallback(summary_dir=exp.abspath('./summary'))
loop.add_callback(summary_cb)
# pre-train the struct_vae
try:
with loop:
start_epoch = 1
part_params = params
latency_only = False
if (config.model.arch == TraceVAEArch.DEFAULT) and config.train.struct_pretrain_epochs:
# train struct_vae first
print(f'Start to train vae with {len(part_params)} params ...')
train_part(
list(part_params),
start_epoch=start_epoch,
max_epoch=config.train.struct_pretrain_epochs,
latency_only=latency_only,
do_final_eval=False,
)
# train latency_vae next
part_params = [
p for n, p in zip(param_names, params)
if n.startswith('latency_vae')
]
start_epoch = config.train.struct_pretrain_epochs + 1
latency_only = True
print(f'Start to train latency_vae with {len(part_params)} params ...')
train_part(
part_params,
start_epoch=start_epoch,
max_epoch=config.train.max_epoch,
latency_only=latency_only,
do_final_eval=False,
)
# do final evaluation
train_part(
[],
start_epoch=-1,
max_epoch=-1,
latency_only=False,
do_final_eval=True,
)
except KeyboardInterrupt:
print(
'Train interrupted, press Ctrl+C again to skip the final test ...',
file=sys.stderr,
)
if __name__ == '__main__':
with mltk.Experiment(ExpConfig) as exp:
config = exp.config
device = config.device or T.first_gpu_device()
with T.use_device(device):
retrial = 0
while True:
try:
main(exp)
except NANLossError as ex:
if ex.epoch != 1 or retrial >= 10:
raise
retrial += 1
print(
f'\n'
f'Restart the experiment for the {retrial}-th time '
f'due to NaN loss at epoch {ex.epoch}.\n',
file=sys.stderr
)
if ex.epoch == 1:
for name in ['checkpoint', 'early-stopping', 'models',
'plotting', 'summary']:
path = exp.abspath(name)
if os.path.isdir(name):
shutil.rmtree(path)
else:
break