Skip to content
代码片段 群组 项目
train.py 18.9 KB
Newer Older
openaiops's avatar
openaiops 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
import json
import math
import random
import shutil
import traceback
from enum import Enum
from functools import wraps
from typing import *

import os
import sys
import mltk
import tensorkit as tk
import numpy as np
import torch
import click
from tensorkit import tensor as T
from tensorkit.examples import utils
from tensorkit.train import Checkpoint

from tracegnn.data import *
from tracegnn.models.trace_vae.evaluation import *
from tracegnn.models.trace_vae.graph_utils import *
from tracegnn.models.trace_vae.tensor_utils import *
from tracegnn.models.trace_vae.types import *
from tracegnn.models.trace_vae.model import *
from tracegnn.models.trace_vae.dataset import *
from tracegnn.utils import *


class NANLossError(Exception):

    def __init__(self, epoch):
        super().__init__(epoch)

    @property
    def epoch(self) -> Optional[int]:
        return self.args[0]

    def __str__(self):
        return f'NaN loss encountered at epoch {self.epoch}'


class OptimizerType(str, Enum):
    ADAM = 'adam'
    RMSPROP = 'rmsprop'


class ExpConfig(mltk.Config):
    model: TraceVAEConfig = TraceVAEConfig()
    device: Optional[str] = 'cpu'
    seed: Optional[int] = 0

    class train(mltk.Config):
        max_epoch: int = 60
        struct_pretrain_epochs: Optional[int] = 40  # number of epochs to pre-train the struct_vae
        ckpt_epoch_freq: Optional[int] = 5
        test_epoch_freq: Optional[int] = 5
        latency_hist_epoch_freq: Optional[int] = 10
        latency_std_hist_epoch_freq: Optional[int] = 5

        use_early_stopping: bool = False
        val_epoch_freq: Optional[int] = 2

        kl_beta: float = 1.0
        warm_up_epochs: Optional[int] = None  # number of epochs to warm-up the prior (KLD)

        l2_reg: float = 0.0001
        z_unit_ball_reg: Optional[float] = None
        z2_unit_ball_reg: Optional[float] = None

        init_batch_size: int = 64
        batch_size: int = 64
        val_batch_size: int = 64

        optimizer: OptimizerType = OptimizerType.RMSPROP
        initial_lr: float = 0.001
        lr_anneal_ratio: float = 0.1
        lr_anneal_epochs: int = 30
        clip_norm: Optional[float] = None
        global_clip_norm: Optional[float] = 10  # important for numerical stability

        test_n_z: int = 10
        num_plot_samples: int = 20

    class test(mltk.Config):
        batch_size: int = 64
        eval_n_z: int = 10
        use_biased: bool = True
        latency_log_prob_weight: bool = True
        clip_nll: Optional[float] = 100_000

    class report(mltk.Config):
        html_ext: str = '.html.gz'

    class dataset(mltk.Config):
        root_dir: str = os.path.abspath('./data/processed')


def main(exp: mltk.Experiment[ExpConfig]):
    # config
    config = exp.config

    # set random seed to encourage reproducibility (does it really work?)
    if config.seed is not None:
        T.random.set_deterministic(True)
        T.random.seed(config.seed)
        np.random.seed(config.seed)
        random.seed(config.seed)

    # Load data
    id_manager = TraceGraphIDManager(os.path.join(config.dataset.root_dir, 'id_manager'))
    latency_range = TraceGraphLatencyRangeFile(os.path.join(config.dataset.root_dir, 'id_manager'))

    train_db = TraceGraphDB(BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'train')))
    val_db = TraceGraphDB(BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'val')))
    test_db = TraceGraphDB(
        BytesMultiDB(
            BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'test')),
            BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'test-drop')),
            BytesSqliteDB(os.path.join(config.dataset.root_dir, 'processed', 'test-latency')),
        )
    )
    train_stream = TraceGraphDataStream(
        train_db, id_manager=id_manager, batch_size=config.train.batch_size,
        shuffle=True, skip_incomplete=False,
    )
    val_stream = TraceGraphDataStream(
        val_db, id_manager=id_manager, batch_size=config.train.val_batch_size,
        shuffle=False, skip_incomplete=False,
    )
    test_stream = TraceGraphDataStream(
        test_db, id_manager=id_manager, batch_size=config.test.batch_size,
        shuffle=False, skip_incomplete=False,
    )

    utils.print_experiment_summary(
        exp,
        train_data=train_stream,
        val_data=val_stream,
        test_data=test_stream
    )
    print('Train Data:', train_db)
    print('Val Data:', val_db)
    print('Test Data:', test_db)

    # build the network
    vae: TraceVAE = TraceVAE(
        config.model,
        id_manager.num_operations,
    )
    vae = vae.to(T.current_device())
    params, param_names = utils.get_params_and_names(vae)
    utils.print_parameters_summary(params, param_names)
    print('')
    mltk.print_with_time('Network constructed.')

    # define the training method for a certain model part
    def train_part(params, start_epoch, max_epoch, latency_only, do_final_eval):
        # util to ensure all installed hooks will only run within this context
        in_context = [True]

        def F(func):
            @wraps(func)
            def wrapper(*args, **kwargs):
                if in_context[0]:
                    return func(*args, **kwargs)
            return wrapper

        # the train procedure
        try:
            # buffer to collect stds of each p(latency|z)
            latency_std = {}
            for key in ('train', 'val', 'test_normal', 'test_drop', 'test_latency'):
                latency_std[key] = ArrayBuffer(81920)

            def should_collect_latency_std():
                return (
                    config.train.latency_std_hist_epoch_freq and
                    loop.epoch % config.train.latency_std_hist_epoch_freq == 0
                )

            def clear_std_buf():
                for buf in latency_std.values():
                    buf.clear()

            # the initialization function
            def initialize():
                G = TraceGraphBatch(
                    id_manager=id_manager,
                    latency_range=latency_range,
                    trace_graphs=train_db.sample_n(config.train.init_batch_size),
                )
                chain = vae.q(G).chain(
                    vae.p,
                    G=G,
                )
                loss = chain.vi.training.sgvb(reduction='mean')
                mltk.print_with_time(f'Network initialized: loss = {T.to_numpy(loss)}')

            # the train functions
            def on_train_epoch_begin():
                # set train mode
                if latency_only:
                    tk.layers.set_eval_mode(vae)
                    tk.layers.set_train_mode(vae.latency_vae)
                else:
                    tk.layers.set_train_mode(vae)

                # clear std buffer
                clear_std_buf()

            def train_step(trace_graphs):
                G = TraceGraphBatch(
                    id_manager=id_manager,
                    latency_range=latency_range,
                    trace_graphs=trace_graphs,
                )
                chain = vae.q(G).chain(
                    vae.p,
                    G=G,
                )

                # collect the latency std
                if should_collect_latency_std():
                    collect_latency_std(latency_std['train'], chain)

                # collect the log likelihoods
                p_obs = []
                p_latent = []
                q_latent = []
                for name in chain.p:
                    if name in chain.q:
                        q_latent.append(chain.q[name].log_prob())
                        p_latent.append(chain.p[name].log_prob())
                    else:
                        # print(name, chain.p[name].log_prob().mean())
                        p_obs.append(chain.p[name].log_prob())

                # get E[log p(x|z)] and KLD[q(z|x)||p(z)]
                recons = T.reduce_mean(T.add_n(p_obs))
                kl = T.reduce_mean(T.add_n(q_latent) - T.add_n(p_latent))

                # KL beta
                beta = config.train.kl_beta
                if config.train.warm_up_epochs and loop.epoch < config.train.warm_up_epochs:
                    beta = beta * (loop.epoch / config.train.warm_up_epochs)
                loss = beta * kl - recons

                # l2 regularization
                if config.train.l2_reg:
                    l2_params = []
                    for p, n in zip(params, param_names):
                        if 'bias' not in n:
                            l2_params.append(p)
                    loss = loss + config.train.l2_reg * T.nn.l2_regularization(l2_params)

                # unit ball regularization
                def add_unit_ball_reg(l, t, reg):
                    if reg is not None:
                        ball_mean, ball_var = get_moments(t, axis=[-1])
                        l = l + reg * (
                            T.reduce_mean(ball_mean ** 2) +
                            T.reduce_mean((ball_var - 1) ** 2)
                        )
                    return l

                loss = add_unit_ball_reg(loss, chain.q['z'].tensor, config.train.z_unit_ball_reg)
                if 'z2' in chain.q:
                    loss = add_unit_ball_reg(loss, chain.q['z2'].tensor, config.train.z2_unit_ball_reg)

                # check and return the metrics
                loss_val = T.to_numpy(loss)
                if math.isnan(loss_val):
                    raise NANLossError(loop.epoch)

                return {'loss': loss, 'recons': recons, 'kl': kl}

            # the validation function
            def validate():
                tk.layers.set_eval_mode(vae)

                def val_step(trace_graphs):
                    with T.no_grad():
                        G = TraceGraphBatch(
                            id_manager=id_manager,
                            latency_range=latency_range,
                            trace_graphs=trace_graphs,
                        )
                        chain = vae.q(G).chain(
                            vae.p,
                            G=G,
                        )
                        # collect the latency std
                        if should_collect_latency_std():
                            collect_latency_std(latency_std['val'], chain)
                        loss = chain.vi.training.sgvb()
                        return {'loss': T.to_numpy(T.reduce_mean(loss))}

                val_loop = loop.validation()
                result_dict = val_loop.run(val_step, val_stream)
                result_dict = {
                    f'val_{k}': v
                    for k, v in result_dict.items()
                }
                summary_cb.update_metrics(result_dict)

            # the evaluation function
            def evaluate(n_z, eval_loop, eval_stream, epoch, use_embeddings=False,
                         plot_latency_hist=False):
                # latency_hist_file
                latency_hist_file = None
                if plot_latency_hist:
                    latency_hist_file = exp.make_parent(f'./plotting/latency-sample/{epoch}.jpg')

                # do evaluation
                tk.layers.set_eval_mode(vae)
                with T.no_grad():
                    kw = {}
                    if should_collect_latency_std():
                        kw['latency_std_dict_out'] = latency_std
                        kw['latency_dict_prefix'] = 'test_'
                    result_dict = do_evaluate_nll(
                        test_stream=eval_stream,
                        vae=vae,
                        id_manager=id_manager,
                        latency_range=latency_range,
                        n_z=n_z,
                        use_biased=config.test.use_biased,
                        latency_log_prob_weight=config.test.latency_log_prob_weight,
                        test_loop=eval_loop,
                        summary_writer=summary_cb,
                        clip_nll=config.test.clip_nll,
                        use_embeddings=use_embeddings,
                        latency_hist_file=latency_hist_file,
                        **kw,
                    )

                with open(exp.make_parent(f'./result/test-anomaly/{epoch}.json'), 'w', encoding='utf-8') as f:
                    f.write(json.dumps(result_dict))
                eval_loop.add_metrics(**result_dict)

            def save_model(epoch=None):
                epoch = epoch or loop.epoch
                torch.save(vae.state_dict(), exp.make_parent(f'models/{epoch}.pt'))

            # final evaluation
            if do_final_eval:
                tk.layers.set_eval_mode(vae)

                # save the final model
                save_model('final')

                clear_std_buf()
                evaluate(
                    n_z=config.test.eval_n_z,
                    eval_loop=mltk.TestLoop(),
                    eval_stream=test_stream,
                    epoch='final',
                    use_embeddings=True,
                    plot_latency_hist=True,
                )

            else:
                # set train mode at the beginning of each epoch
                loop.on_epoch_begin.do(F(on_train_epoch_begin))

                # the optimizer and learning rate scheduler
                if config.train.optimizer == OptimizerType.ADAM:
                    optimizer = tk.optim.Adam(params)
                elif config.train.optimizer == OptimizerType.RMSPROP:
                    optimizer = tk.optim.RMSprop(params)

                def update_lr():
                    n_cycles = int(
                        loop.epoch //  # (loop.epoch - start_epoch) //
                        config.train.lr_anneal_epochs
                    )
                    lr_discount = config.train.lr_anneal_ratio ** n_cycles
                    optimizer.set_lr(config.train.initial_lr * lr_discount)

                update_lr()
                loop.on_epoch_end.do(F(update_lr))

                # install the validation function and early-stopping
                if config.train.val_epoch_freq:
                    loop.run_after_every(
                        F(validate),
                        epochs=config.train.val_epoch_freq,
                    )

                # install the evaluation function during training
                if config.train.test_epoch_freq:
                    loop.run_after_every(
                        F(lambda: evaluate(
                            n_z=config.train.test_n_z,
                            eval_loop=loop.test(),
                            eval_stream=test_stream,
                            epoch=loop.epoch,
                            plot_latency_hist=(
                                config.train.latency_hist_epoch_freq and
                                loop.epoch % config.train.latency_hist_epoch_freq == 0
                            )
                        )),
                        epochs=config.train.test_epoch_freq,
                    )

                # install the plot and sample functions during training
                def after_epoch():
                    save_model()
                loop.run_after_every(F(after_epoch), epochs=1)

                # train the model
                tk.layers.set_eval_mode(vae)
                on_train_epoch_begin()
                initialize()
                utils.fit_model(
                    loop=loop,
                    optimizer=optimizer,
                    fn=train_step,
                    stream=train_stream,
                    clip_norm=config.train.clip_norm,
                    global_clip_norm=config.train.global_clip_norm,
                    # pass to `loop.run()`
                    limit=max_epoch,
                )
        finally:
            in_context = [False]

    # the train loop
    loop = mltk.TrainLoop(max_epoch=config.train.max_epoch)

    # checkpoint
    ckpt = Checkpoint(vae=vae)
    loop.add_callback(mltk.callbacks.AutoCheckpoint(
        ckpt,
        root_dir=exp.make_dirs('./checkpoint'),
        epoch_freq=config.train.ckpt_epoch_freq,
        max_checkpoints_to_keep=10,
    ))

    # early-stopping
    if config.train.val_epoch_freq and config.train.use_early_stopping:
        loop.add_callback(mltk.callbacks.EarlyStopping(
            checkpoint=ckpt,
            root_dir=exp.abspath('./early-stopping'),
            metric_name='val_loss',
        ))

    # the summary writer
    summary_cb = SummaryCallback(summary_dir=exp.abspath('./summary'))
    loop.add_callback(summary_cb)

    # pre-train the struct_vae
    try:
        with loop:
            start_epoch = 1
            part_params = params
            latency_only = False

            if (config.model.arch == TraceVAEArch.DEFAULT) and config.train.struct_pretrain_epochs:
                # train struct_vae first
                print(f'Start to train vae with {len(part_params)} params ...')
                train_part(
                    list(part_params),
                    start_epoch=start_epoch,
                    max_epoch=config.train.struct_pretrain_epochs,
                    latency_only=latency_only,
                    do_final_eval=False,
                )

                # train latency_vae next
                part_params = [
                    p for n, p in zip(param_names, params)
                    if n.startswith('latency_vae')
                ]
                start_epoch = config.train.struct_pretrain_epochs + 1
                latency_only = True
                print(f'Start to train latency_vae with {len(part_params)} params ...')

            train_part(
                part_params,
                start_epoch=start_epoch,
                max_epoch=config.train.max_epoch,
                latency_only=latency_only,
                do_final_eval=False,
            )

        # do final evaluation
        train_part(
            [],
            start_epoch=-1,
            max_epoch=-1,
            latency_only=False,
            do_final_eval=True,
        )

    except KeyboardInterrupt:
        print(
            'Train interrupted, press Ctrl+C again to skip the final test ...',
            file=sys.stderr,
        )


if __name__ == '__main__':
    with mltk.Experiment(ExpConfig) as exp:
        config = exp.config
        device = config.device or T.first_gpu_device()
        with T.use_device(device):
            retrial = 0
            while True:
                try:
                    main(exp)
                except NANLossError as ex:
                    if ex.epoch != 1 or retrial >= 10:
                        raise
                    retrial += 1
                    print(
                        f'\n'
                        f'Restart the experiment for the {retrial}-th time '
                        f'due to NaN loss at epoch {ex.epoch}.\n',
                        file=sys.stderr
                    )
                    if ex.epoch == 1:
                        for name in ['checkpoint', 'early-stopping', 'models',
                                     'plotting', 'summary']:
                            path = exp.abspath(name)
                            if os.path.isdir(name):
                                shutil.rmtree(path)
                else:
                    break