Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import math
from dataclasses import dataclass
from typing import *
import networkx as nx
import numpy as np
import tensorkit as tk
from tensorkit import tensor as T
from tracegnn.data import *
from tracegnn.utils import *
from .constants import *
from .tensor_utils import *
import dgl
import torch
__all__ = [
'flat_to_nx_graphs',
'p_net_to_trace_graphs',
'GraphNodeMatch', 'GraphNodeDiff',
'diff_graph',
]
# util to reshape an array
def reshape_to(x, ndims):
shape = T.shape(x)
return T.reshape(x, [-1] + shape[len(shape) - ndims + 1:])
def to_scalar(x):
return T.to_numpy(x).tolist()
def flat_to_nx_graphs(p: tk.BayesianNet,
id_manager: TraceGraphIDManager,
latency_range: TraceGraphLatencyRangeFile,
min_edge_weight: float = 0.2,
) -> List[nx.Graph]:
"""Convert `p` net sampled from a flat TraceVAE to nx.Graph."""
# extract features
adjs = reshape_to(p['adj'].distribution.probs, 2)
node_counts = T.to_numpy(reshape_to(p['node_count'].tensor, 1))
node_types = T.to_numpy(reshape_to(p['node_type'].tensor, 2))
# span_counts = reshape_to(p['span_count'].tensor, 2)
if 'latency' in p:
latency_src = T.to_numpy(reshape_to(p['latency'].distribution.base_distribution.mean, 3))
latencies = np.zeros(latency_src.shape, dtype=np.float32)
for i in range(node_types.shape[0]):
for j in range(node_types.shape[1]):
try:
node_type = int(node_types[i, j])
mu, std = latency_range[node_type]
latencies[i, j] = latency_src[i, j] * std + mu
except KeyError:
latencies[i, j] = -1. # todo: is this okay?
else:
latencies = None
# build the graph
ret = []
for i, node_count in enumerate(node_counts):
g = nx.Graph()
# add nodes
for j in range(node_count):
g.add_node(j)
# add edges
adj = triu_to_dense(adjs[i: i+1], MAX_NODE_COUNT)
for u in range(node_count):
for v in range(u + 1, node_count):
w = float(to_scalar(adj[u, v]))
if w >= min_edge_weight:
g.add_edge(u, v, weight=w)
# add node attributes
for j in range(node_count):
node_type = int(node_types[i, j])
g.nodes[j]['node_type'] = node_type
g.nodes[j]['operation'] = id_manager.operation_id.reverse_map(node_type)
if latencies is not None:
for k, pfx in enumerate(('avg_', 'max_', 'min_')):
if k < LATENCY_DIM:
g.nodes[j][f'{pfx}latency'] = latencies[i, j, k]
# g.nodes[j]['span_count'] = to_scalar(span_counts[i, j])
# for pfx in ('avg_', 'max_', 'min_'):
# g.nodes[j][f'{pfx}latency'] = latencies[f'{pfx}latency'][i, j]
ret.append(g)
# return the graphs
return ret
def p_net_to_trace_graphs(p: tk.BayesianNet,
id_manager: TraceGraphIDManager,
latency_range: TraceGraphLatencyRangeFile,
discard_node_with_type_0: bool = True,
discard_node_with_unknown_latency_range: bool = True,
discard_graph_with_error_node_count: bool = False,
keep_front_shape: bool = False,
) -> Union[List[Optional[TraceGraph]], np.ndarray]:
"""Convert `p` net sampled from a flat TraceVAE to TraceGraph."""
if USE_MULTI_DIM_LATENCY_CODEC:
raise RuntimeError(f'`USE_MULTI_DIM_LATENCY_CODEC` is not supported.')
# find the base distribution (Normal, Categorical, OneHotCategorical)
def find_base(t: tk.StochasticTensor):
d = t.distribution
while not isinstance(d, (tk.Normal,
tk.Bernoulli,
tk.Categorical,
tk.OneHotCategorical)):
d = d.base_distribution
return d
# extract features
def get_adj(t, pad_value=0):
t = reshape_to(t, 2)
return np.stack(
[
T.to_numpy(triu_to_dense(
t[i: i + 1],
MAX_NODE_COUNT,
pad_value=pad_value
))
for i in range(len(t))
],
axis=0
)
def bernoulli_log_prob(l):
# log(1 / (1 + exp(-l)) = log(exp(l) / (1 + exp(l)))
return T.where(
l >= 0,
-T.log1p(T.exp(-l)),
l - T.log1p(T.exp(l)),
)
def softmax_log_prob(l):
# log(exp(l) / sum(exp(l))
return l - T.log_sum_exp(l, axis=[-1], keepdims=True)
front_shape = T.shape(p['adj'].tensor)[:-1]
adjs = get_adj(p['adj'].tensor)
adj_probs = get_adj(find_base(p['adj']).probs)
adj_logits = get_adj(bernoulli_log_prob(find_base(p['adj']).logits), pad_value=-100000)
node_counts = T.to_numpy(reshape_to(p['node_count'].tensor, 1))
node_types = T.to_numpy(reshape_to(p['node_type'].tensor, 2))
node_count_logits = T.to_numpy(reshape_to(softmax_log_prob(find_base(p['node_count']).logits), 2))
node_type_logits = T.to_numpy(reshape_to(softmax_log_prob(find_base(p['node_type']).logits), 3))
if 'latency' in p:
latencies = T.to_numpy(reshape_to(p['latency'].tensor, 3))
avg_latencies = latencies[..., 0]
latency_means = T.to_numpy(reshape_to(find_base(p['latency']).mean, 3))
latency_stds = T.to_numpy(reshape_to(find_base(p['latency']).std, 3))
# build the graph
ret = []
for i, node_count in enumerate(node_counts):
# extract the arrays
adj = adjs[i][:node_count][:, :node_count]
adj_prob = adj_probs[i][:node_count][:, :node_count]
adj_logit = adj_logits[i] # [:node_count][:, :node_count]
node_type = node_types[i] # [:node_count]
node_mask = np.full([node_count], True, dtype=np.bool)
node_count_logit = node_count_logits[i]
node_type_logit = node_type_logits[i]
if 'latency' in p:
avg_latency = avg_latencies[i]
latency_mean = latency_means[i]
latency_std = latency_stds[i]
# if `discard_node_with_type_0`, set all adjs that from / to `node_type == 0` as 0
node_count_new = node_count
for j in range(node_count):
n_type = int(node_type[j])
if (discard_node_with_type_0 and n_type == 0) or \
(discard_node_with_unknown_latency_range and n_type not in latency_range):
node_mask[j] = False
node_count_new -= 1
adj[:, j] = 0
adj[j, :] = 0
adj_prob[:, j] = 0
adj_prob[j, :] = 0
# for each column in `adj`, if there are more than 2 candidate in-edges,
# or no in-edge, then choose an edge sampled w.r.t. to adj_prob
for j in range(node_count):
if node_mask[j] and np.sum(adj[:, j]) != 1:
prob_vec = adj_prob[:, j]
prob_sum = np.sum(prob_vec)
if prob_sum > 1e-7:
pvals = prob_vec / np.sum(prob_vec)
pvals_mask = pvals > 1e-7
indices = np.arange(len(pvals))[pvals_mask]
k = indices[np.argmax(np.random.multinomial(1, pvals[pvals_mask]))]
adj[:, j] = 0
adj[k, j] = 1
# select the edges
edges = list(zip(*np.where(adj)))
if len(edges) < node_count_new - 1:
# pick out the root sub-graph
union_set = {j: -1 for j in range(node_count) if node_mask[j]}
def find_root(s):
t = union_set[s]
if t == -1:
return s
r = find_root(t)
if r != t:
union_set[s] = r
return r
def link_edge(s, t):
union_set[t] = s
edges_new = []
for s, t in edges:
link_edge(s, t)
for s, t in edges:
if s == 0 or find_root(s) == 0:
edges_new.append((s, t))
edges = edges_new
node_count_new = len(edges_new) + 1
if discard_graph_with_error_node_count and (node_count_new != node_count):
ret.append(None)
continue
# build the trace graph
def get_node(s):
if s not in nodes:
n_type = node_type[s]
if 'latency' in p:
latency = avg_latency[s]
if n_type in latency_range:
mu, std = latency_range[n_type]
latency = latency * std + mu
features = TraceGraphNodeFeatures(
span_count=1,
avg_latency=latency,
max_latency=latency,
min_latency=latency,
)
avg_latency_nstd = float(
abs(avg_latency[s] - latency_mean[s, 0]) /
latency_std[s, 0]
)
else:
features = TraceGraphNodeFeatures(
span_count=1,
avg_latency=math.nan,
max_latency=math.nan,
min_latency=math.nan,
)
avg_latency_nstd = 0
nodes[s] = TraceGraphNode.new_sampled(
node_id=s,
operation_id=node_type[s],
features=features,
scores=TraceGraphNodeReconsScores(
edge_logit=0,
operation_logit=node_type_logit[s, n_type],
avg_latency_nstd=avg_latency_nstd,
)
)
return nodes[s]
nodes = {}
edges.sort()
for u, v in edges:
if node_mask[u] and node_mask[v]:
v_node = get_node(v)
get_node(u).children.append(v_node)
v_node.scores.edge_logit = adj_logit[u, v]
if 0 in nodes:
g = TraceGraph.new_sampled(nodes[0], len(nodes), -1)
g.merge_spans_and_assign_id()
ret.append(g)
else:
ret.append(None)
# return the graphs
if keep_front_shape:
ret = np.array(ret).reshape(front_shape)
return ret
@dataclass(init=False)
class GraphNodeMatch(object):
__slots__ = [
'g1_to_g2',
'g2_to_g1',
]
g1_to_g2: Dict[TraceGraphNode, TraceGraphNode]
g2_to_g1: Dict[TraceGraphNode, TraceGraphNode]
def __init__(self):
self.g1_to_g2 = {}
self.g2_to_g1 = {}
def add_match(self, node1, node2):
self.g1_to_g2[node1] = node2
self.g2_to_g1[node2] = node1
@dataclass(init=False)
class GraphNodeDiff(object):
__slots__ = [
'parent', 'depth', 'node', 'offset', 'node_count',
]
parent: Optional[TraceGraphNode]
depth: int
node: TraceGraphNode
offset: int # -1: present in g but absent in g2; 1: present in g2 but absent in g1
node_count: int # count of nodes in this branch
def __init__(self, parent, depth, node, offset):
self.parent = parent
self.depth = depth
self.node = node
self.offset = offset
self.node_count = node.count_nodes()
def __repr__(self):
return f'GraphNodeDiff(depth={self.depth}, offset={self.offset})'
def diff_graph(g1: TraceGraph,
g2: TraceGraph
) -> Tuple[GraphNodeMatch, List[GraphNodeDiff]]:
m = GraphNodeMatch()
ret = []
def match_node(depth: int,
parent1: Optional[TraceGraphNode],
parent2: Optional[TraceGraphNode],
node1: Optional[TraceGraphNode],
node2: Optional[TraceGraphNode]):
if node1 is None:
if node2 is None:
pass
else:
ret.append(GraphNodeDiff(parent=parent2, depth=depth, node=node2, offset=1))
else:
if node2 is None:
ret.append(GraphNodeDiff(parent=parent1, depth=depth, node=node1, offset=-1))
elif node1.operation_id != node2.operation_id:
ret.append(GraphNodeDiff(parent=parent1, depth=depth, node=node1, offset=-1))
ret.append(GraphNodeDiff(parent=parent2, depth=depth, node=node2, offset=1))
else:
m.add_match(node1, node2)
c_depth = depth + 1
i, j = 0, 0
while i < len(node1.children) and j < len(node2.children):
c1 = node1.children[i]
c2 = node2.children[j]
if c1.operation_id < c2.operation_id:
match_node(c_depth, node1, None, c1, None)
i += 1
elif c2.operation_id < c1.operation_id:
match_node(c_depth, None, node2, None, c2)
j += 1
else:
match_node(c_depth, node1, node2, c1, c2)
i += 1
j += 1
while i < len(node1.children):
c1 = node1.children[i]
match_node(c_depth, node1, None, c1, None)
i += 1
while j < len(node2.children):
c2 = node2.children[j]
match_node(c_depth, None, node2, None, c2)
j += 1
match_node(0, None, None, g1.root, g2.root)
return m, ret
def dgl_graph_key(graph: dgl.DGLGraph) -> str:
return edges_to_key(graph.ndata['operation_id'], *graph.edges())
@torch.jit.script
def edges_to_key(operation_id: torch.Tensor, u_list: torch.Tensor, v_list: torch.Tensor) -> str:
mask = u_list != v_list
u_id: List[int] = operation_id[u_list][mask].tolist()
v_id: List[int] = operation_id[v_list][mask].tolist()
graph_key = f'0,{operation_id[0].item()};' + ';'.join(sorted([f'{u},{v}' for (u, v) in zip(u_id, v_id)]))
return graph_key
def trace_graph_key(graph: TraceGraph) -> str:
def dfs(nd: TraceGraphNode, pa_id: int, cnt: int=1):
cur_cnt = cnt * len(nd.spans)
spans = [f'{pa_id},{nd.operation_id}'] * cur_cnt
for child in nd.children:
spans += dfs(child, nd.operation_id, cur_cnt)
return spans
spans = dfs(graph.root, 0, 1)
return ';'.join(sorted(spans))