Skip to content
代码片段 群组 项目
未验证 提交 1c012ee3 编辑于 作者: dlagul's avatar dlagul 提交者: GitHub
浏览文件

Update evaluation.py

上级 a3ffd542
分支
无相关合并请求
......@@ -174,8 +174,7 @@ class Evaluator():
self.eval_metrics['TN'] = TN
self.eval_metrics['FP'] = FP
self.eval_metrics['Fpr'] = fpr
self.eval_metrics['Tpr'] = tpr
self.logger.log_evaluator(self.eval_metrics)
self.eval_metrics['Tpr'] = tpr
# If the recall has been reached to 1.0, we break the loop, due to the best f1-score has been achieved
# Since as the threshold increases, recall remains unchanged (1.0), while precision decreases and thus f1-score decreases
if float(recall) < 1.0:
......
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册