Skip to content
代码片段 群组 项目
preprocess_data.py 15.6 KB
Newer Older
openaiops's avatar
openaiops 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
import re
import json
import time
import requests
import numpy as np
from copy import deepcopy
import warnings
import paramiko
from elasticsearch import Elasticsearch, helpers
warnings.filterwarnings("ignore")

es_url = 'http://11.11.11.24:9200'
root_index = 'root'
client = Elasticsearch([es_url])


'''
  Query the initial trace data from elasticsearch by scroll(1 min)
  :arg
      date: format 2020-08-14 or 2020-08-*
      start: the timestamp of start time (ms)
      end:  the timestamp of end time (ms)
  :return
      all span between start time and end time except jaeger-query service 
'''


def get_span(start=None, end=None):
    local_time = time.localtime(start/1000)
    day = time.strftime('%Y-%m', local_time)
    index_name = 'jaeger-span-' + day + '-*'
    scroll_api = es_url + "/" + index_name + "/_search?scroll=1m"
    based_api = es_url + "/_search/scroll?filter_path=hits.hits._source"
    headers = {"Content-Type": "application/json"}

    query_data = {
        "size": 10000,
        "query": {
            "bool": {
                "must_not": [
                    {
                        "terms": {
                            "process.serviceName": [
                                "jaeger-query"
                            ]}
                    }
                ],
                "filter": {
                    "range": {
                        "startTimeMillis": {
                            "lte": str(end),
                            "gte": str(start)
                        }
                    }
                }
            }
        },
        "sort": {
            "traceID": {
                "order": "asc"
            },
            "startTime": {
                "order": "asc"
            }
        }
    }
    data = requests.post(scroll_api, json=query_data, headers=headers).json()

    for i in range(10):
        if '_scroll_id' not in data:
            print("query error, restart query scroll")
            time.sleep(10)
            data = requests.post(
                scroll_api, json=query_data, headers=headers).json()
        else:
            break

    scroll_data = {
        "scroll": "1m",
        "scroll": data['_scroll_id']
    }
    span_list = []
    while 'hits' in data and len(data['hits']['hits']) > 0:
        span_list += data['hits']['hits']
        data = requests.post(based_api, json=scroll_data,
                             headers=headers).json()

    print('\nSpan Length:', len(span_list))
    return span_list


'''
  Query all the service_operation from the input span_list
  :arg
     span_list: should be a long time span_list to get all operation
  :return
       the operation list and operation list dict
'''


def get_service_operation_list(span_list):
    operation_list = []

    for doc in span_list:
        doc = doc['_source']
        operation_name = doc['operationName']
        operation_name = operation_name.split('/')[-1]

        # Currencyservice_Convert
        operation = doc['process']['serviceName'] + '_' + operation_name
        if operation not in operation_list:
            operation_list.append(operation)

    return operation_list


"""
   Calculate the mean of duration and variance for each span_list 
   :arg
       operation_list: contains all operation
       span_list: should be a long time span_list
   :return
       operation dict of the mean of and variance 
       {
           # operation: {mean, variance}
           "Currencyservice_Convert": [600, 3]}
       }   
"""


def get_operation_slo(service_operation_list, span_list):
    template = {
        'parent': '',  # parent span
        'operation': '',  # current servicename_operation
        'duration': 0  # duration of current operation
    }

    traceid = span_list[0]['_source']['traceID']
    filter_data = {}
    temp = {}
    normal_trace = True

    def check_filter_data():
        for spanid in temp:
            if temp[spanid]['parent'] == root_index:
                if temp[spanid]['duration'] > 1000000:
                    print("filter data because duration > 1000ms")
                    print(temp)
                    return False
        return True

    def server_client_determined():
        """
        :return span.kind
        tags: [{"key": "span.kind",
            "type": "string",
            "value": "server"}]
        """
        for tag in doc['tags']:
            if tag['key'] == "span.kind":
                return tag['value']

    def get_operation_name():
        operation_name = doc['operationName']
        operation_name = operation_name.split('/')[-1]
        operation_name = doc['process']['serviceName'] + '_' + operation_name
        return operation_name

    for doc in span_list:
        doc = doc['_source']
        if traceid == doc['traceID']:
            spanid = doc['spanID']
            temp[spanid] = deepcopy(template)
            temp[spanid]['duration'] = doc['duration']
            temp[spanid]['operation'] = get_operation_name()

            if server_client_determined() == 'server' and doc['process']['serviceName'] == "frontend":
                temp[spanid]['parent'] = root_index
            else:
                """
               "references" : [{"refType" : "CHILD_OF",
                "traceID" : "0000658f4e42f8674d2e36630a9ca2b8",
                "spanID" : "83438897471cc41a"}],
                """
                if len(doc['references']) == 0:
                    print(doc)
                    normal_trace = False
                else:
                    parentId = doc['references'][0]['spanID']
                    temp[spanid]['parent'] = parentId
                    if parentId in temp:
                        temp[parentId]['duration'] -= temp[spanid]['duration']
                    else:
                        normal_trace = False

        elif traceid != doc['traceID'] and len(temp) > 0:
            if check_filter_data() and normal_trace:
                filter_data[traceid] = temp

            traceid = doc['traceID']
            normal_trace = True
            spanid = doc['spanID']
            temp = {}
            temp[spanid] = deepcopy(template)
            temp[spanid]['duration'] = doc['duration']
            temp[spanid]['operation'] = get_operation_name()
            if server_client_determined() == 'server' and doc['process']['serviceName'] == "frontend":
                temp[spanid]['parent'] = root_index
            else:
                if len(doc['references']) == 0:
                    normal_trace = False
                    print(
                        "filter data because it is not frontend and its references is null ")
                    print(traceid)
                else:
                    parentId = doc['references'][0]['spanID']
                    temp[spanid]['parent'] = parentId
                if parentId in temp:
                    temp[parentId]['duration'] -= temp[spanid]['duration']
                else:
                    normal_trace = False
    # The last trace
    if len(temp) > 1:
        if check_filter_data() and normal_trace:
            filter_data[traceid] = temp

    duration_dict = {}
    """
    {'frontend_Recv.': [1961, 1934, 1316, 1415, 1546, 1670, 1357, 2099, 2789, 1832, 1270, 1242, 2230, 1386],
      'recommendationservice_ListProducts': [3576, 7127, 4387, 19657, 5158, 4563, 4167, 8822, 4507],
    """
    for operation in service_operation_list:
        duration_dict[operation] = []

    for traceid in filter_data:
        single_trace = filter_data[traceid]

        for spanid in single_trace:
            duration_dict[single_trace[spanid]['operation']].append(
                single_trace[spanid]['duration'])

    operation_slo = {}
    """
    {'frontend_Recv.': [2.903, 10.0949], 'frontend_GetSupportedCurrencies': [8.1019, 16.2973], }
    """
    for operation in service_operation_list:
        operation_slo[operation] = []

    for operation in service_operation_list:
        operation_slo[operation].append(
            round(np.mean(duration_dict[operation]) / 1000.0, 4))
        #operation_slo[operation].append(round(np.percentile(duration_dict[operation], 90) / 1000.0, 4))
        operation_slo[operation].append(
            round(np.std(duration_dict[operation]) / 1000.0, 4))

    return operation_slo


'''
   Query the operation and duration in span_list for anormaly detector 
   :arg
       operation_list: contains all operation
       operation_dict:  { "operation1": 1, "operation2":2 ... "operationn": 0, "duration": 666}
       span_list: all the span_list in one anomaly detection interval (1 min or 30s)
   :return
       { 
          traceid: {
              operation1: 1
              operation2: 2
          }
       }
'''


def get_operation_duration_data(operation_list, span_list):
    operation_dict = {}

    trace_id = span_list[0]['_source']['traceID']

    def server_client_determined():
        for tag in doc['tags']:
            if tag['key'] == "span.kind":
                return tag['value']

    def get_operation_name():
        operation_name_tmp = doc['operationName']
        operation_name_tmp = operation_name_tmp.split('/')[-1]
        operation_name_tmp = doc['process']['serviceName'] + \
            '_' + operation_name_tmp
        return operation_name_tmp

    def init_dict(trace_id):
        if trace_id not in operation_dict:
            operation_dict[trace_id] = {}
            for operation in operation_list:
                operation_dict[trace_id][operation] = 0
            operation_dict[trace_id]['duration'] = 0

    length = 0
    for doc in span_list:
        doc = doc['_source']
        tag = server_client_determined()
        operation_name = get_operation_name()

        init_dict(doc['traceID'])

        if trace_id == doc['traceID']:
            operation_dict[trace_id][operation_name] += 1
            length += 1

            if doc['process']['serviceName'] == "frontend" and tag == "server":
                operation_dict[trace_id]['duration'] += doc['duration']

        else:
            if operation_dict[trace_id]['duration'] == 0:
                if length > 45:
                    operation_dict.pop(trace_id)

                else:
                    operation_dict.pop(trace_id)

            trace_id = doc['traceID']
            length = 0
            operation_dict[trace_id][operation_name] += 1

            if doc['process']['serviceName'] == "frontend" and tag == "server":
                operation_dict[trace_id]['duration'] += doc['duration']

    return operation_dict


'''
   Query the pagerank graph
   :arg
       trace_list: anormaly_traceid_list or normaly_traceid_list
       span_list:  异常点前后两分钟 span_list
   
   :return
       operation_operation 存储子节点 Call graph
       operation_operation[operation_name] = [operation_name1 , operation_name1 ] 

       operation_trace 存储trace经过了哪些operation, 右上角 coverage graph
       operation_trace[traceid] = [operation_name1 , operation_name2]

       trace_operation 存储 operation被哪些trace 访问过, 左下角 coverage graph
       trace_operation[operation_name] = [traceid1, traceid2]  
       
       pr_trace: 存储trace id 经过了哪些operation,不去重
       pr_trace[traceid] = [operation_name1 , operation_name2]
'''


def get_pagerank_graph(trace_list, span_list):
    template = {
        'parent': '',  # parent span
        'operation': '',  # current servicename_operation
    }

    if len(trace_list) > 0:
        traceid = trace_list[0]
    else:
        traceid = span_list[0]
    filter_data = {}
    temp = {}

    def get_operation_name():
        """
        有时pod_name在 tags 中,有时在process的tags中
        "process": {"tags": [{"key": "name",
                    "type": "string",
                    "value": "frontend-7dbb469cd9-lkv68"}]}
        "tags" : [{"key" : "name",
              "type" : "string",
              "value" : "adservice-7688bd74f6-7qkvl"}]

        operation = pod_name + operation_name
        :return operation
        """
        pod_name = ""

        for tag in doc['process']['tags']:
            if tag['key'] == "name":
                pod_name = tag['value']

        for tag in doc['tags']:
            if tag['key'] == "name":
                pod_name = tag['value']

        operation = pod_name + "_" + doc['operationName']
        return operation

    operation_operation = {}
    operation_trace = {}
    trace_operation = {}
    pr_trace = {}

    for doc in span_list:
        doc = doc['_source']
        operation_name = get_operation_name()
        if doc['traceID'] in trace_list:
            if traceid == doc['traceID']:
                spanid = doc['spanID']
                temp[spanid] = deepcopy(template)
                temp[spanid]['operation'] = get_operation_name()

                if len(doc['references']) > 0:
                    parentId = doc['references'][0]['spanID']
                    temp[spanid]['parent'] = parentId

            elif traceid != doc['traceID'] and len(temp) > 0:
                filter_data[traceid] = temp

                traceid = doc['traceID']
                spanid = doc['spanID']
                temp = {}
                temp[spanid] = deepcopy(template)
                temp[spanid]['operation'] = get_operation_name()

                if len(doc['references']) > 0:
                    parentId = doc['references'][0]['spanID']
                    temp[spanid]['parent'] = parentId

            if len(temp) > 1:
                filter_data[traceid] = temp

            """
            operation_operation 
            operation_operation[operation_name] = [operation_name1 , operation_name1 ] 

            operation_trace
            operation_trace[traceid] = [operation_name1 , operation_name1]

            trace_operation
            trace_operation[operation_name] = [traceid1, traceid2]
            """
            if operation_name not in operation_operation:
                operation_operation[operation_name] = []
                trace_operation[operation_name] = []

            if doc['traceID'] not in operation_trace:
                operation_trace[doc['traceID']] = []
                pr_trace[doc['traceID']] = []

            pr_trace[doc['traceID']].append(operation_name)

            if operation_name not in operation_trace[doc['traceID']]:
                operation_trace[doc['traceID']].append(operation_name)
            if doc['traceID'] not in trace_operation[operation_name]:
                trace_operation[operation_name].append(doc['traceID'])

    for traceid in filter_data:
        single_trace = filter_data[traceid]
        if traceid in trace_list:
            for spanid in single_trace:
                parent_id = single_trace[spanid]["parent"]
                if parent_id != "":
                    if parent_id not in single_trace:
                        continue
                    if single_trace[spanid]["operation"] not in operation_operation[
                            single_trace[parent_id]["operation"]]:
                        operation_operation[single_trace[parent_id]["operation"]].append(
                            single_trace[spanid]["operation"])

    return operation_operation, operation_trace, trace_operation, pr_trace


if __name__ == '__main__':
    def timestamp(datetime):
        timeArray = time.strptime(datetime, "%Y-%m-%d %H:%M:%S")
        ts = int(time.mktime(timeArray)) * 1000
        # print(ts)
        return ts

    start = '2020-08-28 14:56:43'
    end = '2020-08-28 14:57:44'

    span_list = get_span(start=timestamp(start), end=timestamp(end))
    # print(span_list)
    operation_list = get_service_operation_list(span_list)
    print(operation_list)
    operation_slo = get_operation_slo(
        service_operation_list=operation_list, span_list=span_list)
    print(operation_slo)