-
由 openaiops 创作于4645f499
fed_main.py 7.75 KiB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from data_loader import AliyunDataLoaderForFed,CMCCDataLoaderForFed
from model import robustlog
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
import os
import copy
import numpy as np
from sklearn.metrics import classification_report, accuracy_score
import pathlib
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=2020)
parser.add_argument('--classes', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--global_epochs', type=int, default=10)
parser.add_argument('--local_epochs', type=int, default=10)
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--embed_dim', type=int, default=768)
parser.add_argument('--world_size', type=int, default=6)
parser.add_argument('--out_dir', type=str, default='0917')
parser.add_argument('--datatype', type=str, default='aliyun')
parser.add_argument('--is_train', type=bool, default=True)
# parser.add_argument('--is_semi', type=int, default=0)
args = parser.parse_args()
seed = args.seed
classes = args.classes
batch_size = args.batch_size
learning_rate = args.learning_rate
global_epochs = args.global_epochs
local_epochs = args.local_epochs
device = torch.device('cuda:{}'.format(args.gpu_id))
embed_dim = args.embed_dim
world_size = args.world_size
out_path = args.out_dir
datatype = args.datatype
is_train = args.is_train
# is_semi = True if args.is_semi==1 else False
is_semi = False
out_dir = f"output/fedlog_{datatype}_logs_{out_path}_{global_epochs}e_{local_epochs}locEpoch_{learning_rate}lr_{batch_size}bs_{world_size}ws_{is_semi}semis"
save_dir = os.path.join(out_dir, "model_save")
def torch_seed(seed):
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_datasets_aliyun(rank,world_size):
train_db = AliyunDataLoaderForFed(mode='train',semi=False,rank=rank,world_size=world_size)
test_db = AliyunDataLoaderForFed(mode='test',semi=False,rank=rank,world_size=world_size)
print(rank,len(train_db),len(test_db))
train_loader = DataLoader(train_db,batch_size=batch_size,shuffle=True,drop_last=True)
test_loader = DataLoader(test_db,batch_size=batch_size)
val_loader = test_loader
return train_loader,val_loader,test_loader
def load_datasets_cmcc(rank,world_size):
train_db = CMCCDataLoaderForFed(mode='train',semi=False,rank=rank,world_size=world_size)
test_db = CMCCDataLoaderForFed(mode='test',semi=False,rank=rank,world_size=world_size)
train_loader = DataLoader(train_db,batch_size=batch_size,shuffle=True,drop_last=True)
test_loader = DataLoader(test_db,batch_size=batch_size)
val_loader = test_loader
return train_loader,val_loader,test_loader
# Federated averaging: FedAvg
def FedAvg(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k]
w_avg[k] = torch.div(w_avg[k], len(w))
return w_avg
def cal_f1(label_list, pred_list,fw=None):
label_arr = np.array(label_list)
pred_arr = np.array(pred_list)
# 异常检测
ad_label = np.where(label_arr>0,1,0)
ad_pred = np.where(pred_arr>0,1,0)
print("异常检测结果:")
print(classification_report(ad_label,ad_pred))
if fw:
fw.write("异常检测结果:\n")
fw.write(classification_report(ad_label,ad_pred))
fw.write('\n\n')
if __name__=='__main__':
torch_seed(seed)
print(out_dir,'\n',save_dir)
if datatype == 'aliyun':
loader_list = [load_datasets_aliyun(i,world_size) for i in range(1,world_size)]
else:
loader_list = [load_datasets_cmcc(i,world_size) for i in range(1,world_size)]
client_list = [robustlog(300,10,2,device=device).to(device) for i in range(1,world_size)]
# optimizer_client_list = [optim.Adam(client_list[i].parameters(), lr=learning_rate) for i in range(world_size-1)]
# optimizer_server_list = [optim.Adam(server_list[i].parameters(), lr = learning_rate) for i in range(world_size-1)]
best_score_list = [0 for _ in range(world_size-1)]
if not os.path.exists(out_dir):
os.mkdir(out_dir)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
fw_list = [open("./{}/log{}.txt".format(out_dir, i+1),'w') for i in range(0,world_size-1)]
criteon = nn.CrossEntropyLoss().to(device)
# save model parameter
for i,model in enumerate(client_list):
torch.save(model.state_dict(),os.path.join(save_dir,f"model_param{i}.pkl"))
for it in range(global_epochs):
print('*'*5,it,'*'*5)
#train
for i in range(world_size-1):
client_model = client_list[i]
optimizer_client = optim.SGD(client_list[i].parameters(), lr=learning_rate)
client_model.train()
train_loader = loader_list[i][0]
for e in range(local_epochs):
print('server',i ,'train epoch:', e)
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
target[target!=0] = 1
# print(data.dtype,inputs.dtype)
# logits = model(data)
logits = client_model(data)
loss = criteon(logits, target)
optimizer_client.zero_grad()
loss.backward()
optimizer_client.step()
client_model = FedAvg(list(map(lambda x:x.state_dict(),client_list)))
for i in range(world_size-1):
client_list[i].load_state_dict(client_model)
for i in range(world_size-1):
client_model = client_list[i]
client_model.eval()
val_loader = loader_list[i][1]
#valid
test_loss = 0
y_true = []
y_pred = []
for data, target in val_loader:
target[target!=0] = 1
y_true.extend(target)
data, target = data.to(device), target.to(device)
logits = client_model(data)
# logits = model(data)
test_loss += criteon(logits, target).item()
pred = logits.data.topk(1)[1].flatten().cpu()
y_pred.extend(pred)
test_loss /= len(val_loader.dataset)
# F1_Score = f1_score(y_true, y_pred)
acc = accuracy_score(y_true, y_pred)
print('\n{},VALID set: Average loss: {:.4f},score:{}\n'.format(
i,test_loss,round(acc.item(),4)))
fw_list[i].write('\n{},VALID set: Average loss: {:.4f},score:{}\n'.format(
it,test_loss,round(acc.item(),4)))
if acc>best_score_list[i]:
best_score_list[i] = acc
torch.save(client_model.state_dict(),os.path.join(save_dir,f"model_param{i}.pkl"))
for i in range(world_size-1):
print("local server",i)
client_model.load_state_dict(torch.load(os.path.join(save_dir,f"model_param{i}.pkl")))
client_model.eval()
test_loader = loader_list[i][2]
pred_list = []
label_list = []
for data, target in test_loader:
target[target!=0] = 1
data, target = data.to(device), target.to(device)
logits = client_model(data)
pred = logits.data.topk(1)[1].flatten()
pred_list.extend(list(pred.cpu()))
label_list.extend(list(target.cpu()))
cal_f1(label_list, pred_list,fw_list[i])
for f in fw_list:
f.close()