Skip to content
代码片段 群组 项目
stream.py 47.6 KB
Newer Older
openaiops's avatar
openaiops 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
import warnings
from logging import getLogger
from queue import Queue
from threading import Thread, Semaphore
from typing import *

import numpy as np

from ..typing_ import *
from ..utils import (minibatch_slices_iterator, AutoInitAndCloseable, NOT_SET,
                     GeneratorIterator, to_number_or_numpy)

__all__ = [
    'DataStream', 'UserGeneratorDataStream',
    'ArraysDataStream', 'IntSeqDataStream',
    'GeneratorFactoryDataStream', 'GatherDataStream',
    'MapperDataStream', 'ThreadingDataStream',
]


def map_to_tuple(fn: Callable[[Any], TObject], seq: Iterable[Any]):
    return tuple(fn(s) for s in seq)


def to_data_shapes(data_shapes) -> Tuple[ArrayShape, ...]:
    return map_to_tuple(lambda x: map_to_tuple(int, x), data_shapes)


def to_readonly_array(arr: Array) -> Array:
    arr = np.asarray(arr)
    arr.setflags(write=False)
    return arr


def ensure_batch_is_tuple(batch: Union[Array, ArrayTupleOrList]
                          ) -> ArrayTuple:
    if not isinstance(batch, (tuple, list)):
        batch = (batch,)
    else:
        batch = tuple(batch)
    return batch


class DataStream(object):
    """
    Class to construct mini-batch data iterators.

    Constructing Data Streams
    =========================

    All :class:`DataStream` subclasses shipped by `ml_essentials` can be
    constructed via factory methods of this base class.

    To construct a data stream from numpy arrays, you may:

    >>> x = np.arange(5, dtype=np.int32)
    >>> y = x ** 2
    >>> stream = DataStream.arrays([x, y], batch_size=3)
    >>> for [a, b] in stream:
    ...     print(a, b)
    [0 1 2] [0 1 4]
    [3 4] [ 9 16]

    To construct a integer sequence data stream, you may:

    >>> stream = DataStream.int_seq(start=1, stop=10, step=2, batch_size=3)
    >>> for [a] in stream:
    ...     print(a)
    [1 3 5]
    [7 9]

    To gather multiple data streams into one, you may:

    >>> stream_1 = DataStream.int_seq(5, batch_size=3)
    >>> stream_2 = DataStream.int_seq(-5, step=-1, batch_size=3)
    >>> for [a] in stream_1:
    ...     print(a)
    [0 1 2]
    [3 4]
    >>> for [b] in stream_2:
    ...     print(b)
    [ 0 -1 -2]
    [-3 -4]
    >>> stream = DataStream.gather([stream_1, stream_2])
    >>> for [a, b] in stream:
    ...     print(a, b)
    [0 1 2] [ 0 -1 -2]
    [3 4] [-3 -4]

    To turn an arbitrary mini-batch generator factory function into a data
    stream, you may:

    >>> def data_generator():
    ...     for i in range(2):
    ...         yield np.arange(i * 3, (i + 1) * 3, dtype=np.int32)

    >>> stream = DataStream.generator(data_generator)
    >>> for [a] in stream:
    ...     print(a)
    [0 1 2]
    [3 4 5]

    or you may generate a tuple / list of arrays:

    >>> def data_generator():
    ...     for i in range(2):
    ...         arr = np.arange(i * 3, (i + 1) * 3, dtype=np.int32)
    ...         yield arr, arr ** 2  # or return [x + y, x * y]

    >>> stream = DataStream.generator(data_generator)
    >>> for [a, b] in stream:
    ...     print(a, b)
    [0 1 2] [0 1 4]
    [3 4 5] [ 9 16 25]

    Transforming Data Streams
    =========================

    A :class:`DataStream` instance can be transformed into another data stream.

    To select a subset of the arrays within each mini-batch, or re-order the
    arrays, you may:

    >>> x = np.arange(0, 5, dtype=np.int32)
    >>> y = np.arange(5, 10, dtype=np.int32)
    >>> z = np.arange(10, 15, dtype=np.int32)
    >>> # note we shall select [x, z, x]
    >>> stream = DataStream.arrays([x, y, z], batch_size=3).select([0, 2, 0])
    >>> for [a, b, c] in stream:
    ...     print(a, b, c)
    [0 1 2] [10 11 12] [0 1 2]
    [3 4] [13 14] [3 4]

    To transform the arrays within each mini-batch by a mapper function,
    you may:

    >>> def mapper(x, y):
    ...     return x + y

    >>> x = np.arange(0, 5, dtype=np.int32)
    >>> y = np.arange(5, 10, dtype=np.int32)
    >>> stream = DataStream.arrays([x, y], batch_size=3).map(mapper)
    >>> for [a] in stream:
    ...     print(a)
    [5 7 9]
    [11 13]

    or you may return a tuple / list of arrays:

    >>> def mapper(x, y):
    ...     return x + y, x * y  # or return [x + y, x * y]

    >>> x = np.arange(0, 5, dtype=np.int32)
    >>> y = np.arange(5, 10, dtype=np.int32)
    >>> stream = DataStream.arrays([x, y], batch_size=3).map(mapper)
    >>> for [a, b] in stream:
    ...     print(a, b)
    [5 7 9] [ 0  6 14]
    [11 13] [24 36]

    To pre-fetch from a time-consuming data stream in background thread
    (which is necessary when using a slow mapper), you may:

    >>> stream = DataStream.int_seq(5, batch_size=3)
    >>> with stream.threaded(prefetch=2) as prefetch_stream:
    ...     for [x] in prefetch_stream:
    ...         print(x)
    [0 1 2]
    [3 4]
    """

    def __init__(self,
                 batch_size: Optional[int] = None,
                 array_count: Optional[int] = None,
                 data_shapes: Optional[Tuple[ArrayShape, ...]] = None,
                 data_length: Optional[int] = None,
                 random_state: Optional[np.random.RandomState] = None):
        """
        Construct a :class:`DataStream`.

        Args:
            batch_size: The number of data within each mini-batch.
            array_count: The number of arrays within each mini-batch.
            data_shapes: The data shapes (excluding the batch axis).
            data_length: The total number of data.
            random_state: The NumPy random state instance.

        Raises:
            ValueError: If `len(data_shapes) != array_count`.

                >>> stream = DataStream(data_shapes=((), (3, 5)), array_count=3)
                Traceback (most recent call last):
                    ...
                ValueError: len(data_shapes) != array_count: data_shapes ((), (3, 5)) vs array_count 3
        """
        if batch_size is not None:
            batch_size = int(batch_size)
        if array_count is not None:
            array_count = int(array_count)
        if data_shapes is not None:
            data_shapes = to_data_shapes(data_shapes)
            if array_count is None:
                array_count = len(data_shapes)
            elif array_count != len(data_shapes):
                raise ValueError(f'len(data_shapes) != array_count: '
                                 f'data_shapes {data_shapes} vs '
                                 f'array_count {array_count}')
        if data_length is not None:
            data_length = int(data_length)
        if random_state is not None and not \
                isinstance(random_state, np.random.RandomState):
            raise TypeError(f'`random_state` is not np.random.RandomState: '
                            f'{random_state!r}')

        if data_length is not None and batch_size is not None:
            batch_count = int((data_length + batch_size - 1) // batch_size)
        else:
            batch_count = None

        self._batch_size = batch_size
        self._batch_count = batch_count
        self._array_count = array_count
        self._data_shapes = data_shapes
        self._data_length = data_length
        self._random_state = random_state
        self._active_iterator = None
        self._auto_close_iterator_warning_printed = False

    def __iter__(self) -> GeneratorIterator[ArrayTuple]:
        """
        Iterate through the mini-batches.

        Note if a previous iterator is not closed before obtaining a new one,
        the previous iterator will be closed automatically, and a warning will
        be printed to the console (for only once).
        """
        if self._active_iterator is not None:
            self._active_iterator.close()
            self._active_iterator = None
            if not self._auto_close_iterator_warning_printed:
                warnings.warn(
                    f'Another iterator of the DataStream {self!r} is still '
                    f'active, will close it automatically.  If you did not '
                    f'exhaust the iterator, remember to call `close()` on it.',
                    UserWarning,
                )
                self._auto_close_iterator_warning_printed = True

        def make_generator():
            g = self._minibatch_iterator()
            try:
                yield from g
            finally:
                self._active_iterator = None

        self._active_iterator = GeneratorIterator(make_generator())
        return self._active_iterator

    def __len__(self):
        """
        Get the total number of data.

        If a data stream reports this number (i.e., being not None), then it
        equals to the sum of array lengths from all mini-batches in one epoch.

        >>> stream = DataStream.int_seq(5, batch_size=3)
        >>> len(stream)
        5
        >>> stream = DataStream.int_seq(5, batch_size=3, skip_incomplete=True)
        >>> len(stream)
        3

        Raises:
            RuntimeError: If a data stream cannot report this number,
                i.e., `data_length` is None.


                >>> def g():
                ...     yield np.arange(3)

                >>> stream = DataStream.generator(g)
                >>> stream.data_length is None
                True
                >>> len(stream)
                Traceback (most recent call last):
                    ...
                RuntimeError: stream data length is not available
        """
        ret = self.data_length
        if ret is None:
            raise RuntimeError(f'stream data length is not available')
        return ret

    @property
    def batch_size(self) -> Optional[int]:
        """
        Get the batch size of this data stream.

        If a data stream reports this number (i.e., being not None), then the
        actual length of each mini-batch is guaranteed to be NO MORE THAN this.

        >>> x = np.random.normal(size=[5, 4])
        >>> stream = DataStream.arrays([x], batch_size=3)
        >>> stream.batch_size
        3
        """
        return self._batch_size

    @property
    def array_count(self) -> Optional[int]:
        """
        Get the count of arrays within each mini-batch.

        >>> x = np.random.normal(size=[5, 4])
        >>> y = np.random.normal(size=[5, 3, 2])
        >>> stream = DataStream.arrays([x, y], batch_size=3)
        >>> stream.array_count
        2
        """
        return self._array_count

    @property
    def data_shapes(self) -> Optional[Tuple[ArrayShape, ...]]:
        """
        Get the data shapes.

        Data shapes are shapes if mini-batch array without the batch axis.

        >>> x = np.random.normal(size=[5, 4])
        >>> y = np.random.normal(size=[5, 3, 2])
        >>> stream = DataStream.arrays([x, y], batch_size=3)
        >>> stream.data_shapes
        ((4,), (3, 2))
        """
        return self._data_shapes

    @property
    def data_length(self) -> Optional[int]:
        """
        Get the total number of data.

        If a data stream reports this number (i.e., being not None), then it
        equals to the sum of array lengths from all mini-batches in one epoch.

        >>> stream = DataStream.int_seq(5, batch_size=3)
        >>> stream.data_length
        5
        >>> stream = DataStream.int_seq(5, batch_size=3, skip_incomplete=True)
        >>> stream.data_length
        3
        """
        return self._data_length

    @property
    def batch_count(self) -> Optional[int]:
        """
        Get the total number of batches in an epoch.

        >>> stream = DataStream.int_seq(5, batch_size=3)
        >>> stream.batch_count
        2
        >>> stream = DataStream.int_seq(5, batch_size=3, skip_incomplete=True)
        >>> stream.batch_count
        1
        """
        return self._batch_count

    @property
    def random_state(self) -> Optional[np.random.RandomState]:
        """Get the NumPy random state associated with this data stream."""
        return self._random_state

    def copy(self, **kwargs):
        """
        Get a copy of this data stream.

        You may override some of the construction arguments by specifying
        named arguments via :param:`kwargs`.  However, some argument may
        not be overridable (depends on the implementation of subclasses).

        >>> x = np.arange(5, dtype=np.int32)
        >>> stream = DataStream.arrays([x], batch_size=3)
        >>> for [a] in stream:
        ...     print(a)
        [0 1 2]
        [3 4]
        >>> stream2 = stream.copy(batch_size=4)
        >>> isinstance(stream2, ArraysDataStream)
        True
        >>> for [a] in stream2:
        ...     print(a)
        [0 1 2 3]
        [4]

        Args:
            \\**kwargs: The overrided construction arguments.

        Returns:
            The copied data stream.
        """
        raise NotImplementedError()

    def _copy_helper(self, attrs: Iterable[str], **kwargs):
        for attr in attrs:
            kwargs.setdefault(attr, getattr(self, attr))
        return self.__class__(**kwargs)

    def _minibatch_iterator(self) -> Generator[ArrayTuple, None, None]:
        raise NotImplementedError()

    def get_arrays(self, max_batch: Optional[int] = None) -> Tuple[np.ndarray, ...]:
        """
        Collecting mini-batches into NumPy arrays.

        >>> x = np.arange(0, 5, dtype=np.int32)
        >>> stream = DataStream.arrays([x], batch_size=3).map(lambda t: t ** 2)

        >>> arrays = stream.get_arrays()
        >>> len(arrays)
        1
        >>> print(arrays[0])
        [ 0  1  4  9 16]

        >>> arrays = stream.get_arrays(max_batch=1)
        >>> len(arrays)
        1
        >>> print(arrays[0])
        [0 1 4]

        >>> arrays = stream.get_arrays(max_batch=0)
        >>> len(arrays)
        1
        >>> print(arrays[0])
        []

        Args:
            max_batch: If specified, will take at most this number of batches.

        Returns:
            The collected arrays.

        Raises:
            RuntimeError: If this data-flow is empty.

                >>> def g():
                ...     if False:
                ...         yield ()

                >>> stream = DataStream.generator(g)
                >>> stream.get_arrays()
                Traceback (most recent call last):
                    ...
                RuntimeError: empty data stream cannot be converted to arrays
        """
        arrays_buf = []
        g = iter(self)
        try:
            try:
                batch = next(g)
            except StopIteration:
                raise RuntimeError(
                    'empty data stream cannot be converted to arrays')
            try:
                arrays_buf = [[to_number_or_numpy(arr)] for arr in batch]
                batch_index = 1
                while max_batch is None or batch_index < max_batch:
                    batch = next(g)
                    for i, arr in enumerate(batch):
                        arrays_buf[i].append(to_number_or_numpy(arr))
                    batch_index += 1
                if max_batch == 0:
                    arrays_buf = [[array_buf[0][:0]]
                                  for array_buf in arrays_buf]
            except StopIteration:
                pass
            return tuple(np.concatenate(array_buf) for array_buf in arrays_buf)
        finally:
            g.close()

    def to_arrays_stream(self,
                         batch_size: int = NOT_SET,
                         shuffle: bool = False,
                         skip_incomplete: bool = False,
                         random_state: Optional[np.random.RandomState] = NOT_SET
                         ) -> 'ArraysDataStream':
        """
        Convert this data-flow to an arrays stream.

        By default, the original batch size will be preserved:

        >>> stream = DataStream.int_seq(5, batch_size=3).map(lambda x: x ** 2)
        >>> isinstance(stream, MapperDataStream)
        True
        >>> stream2 = stream.to_arrays_stream()
        >>> isinstance(stream2, ArraysDataStream)
        True
        >>> for [a] in stream2:
        ...     print(a)
        [0 1 4]
        [ 9 16]

        You may also override the batch size:

        >>> stream3 = stream.to_arrays_stream(batch_size=4)
        >>> for [a] in stream3:
        ...     print(a)
        [0 1 4 9]
        [16]

        Args:
            batch_size: The number of data within each mini-batch.
                If not specified, will use the original batch size if possible.
            shuffle: Whether or not to shuffle data?
            skip_incomplete: Whether or not to exclude the last mini-batch
                if it is incomplete?
            random_state : The NumPy random state instance.
                If not specified, will use the original random state instance.

        Returns:
            The constructed array stream.

        Raises:
            ValueError: If the batch size is neither specified, nor can it
                be determined according to the original batch size.

                >>> def g():
                ...     yield np.arange(3)

                >>> stream = DataStream.generator(g)
                >>> stream.to_arrays_stream()
                Traceback (most recent call last):
                    ...
                ValueError: `batch_size` must be specified
        """
        if batch_size is NOT_SET:
            batch_size = self.batch_size
        if batch_size is None:
            raise ValueError('`batch_size` must be specified')

        if random_state is NOT_SET:
            random_state = self.random_state

        return ArraysDataStream(
            self.get_arrays(), batch_size=batch_size, shuffle=shuffle,
            skip_incomplete=skip_incomplete, random_state=random_state
        )

    # -------- here starts the factory methods --------
    @staticmethod
    def arrays(arrays: Iterable[Array],
               batch_size: int,
               shuffle: bool = False,
               skip_incomplete: bool = False,
               random_state: Optional[np.random.RandomState] = None
               ) -> 'ArraysDataStream':
        """
        Construct an arrays stream, i.e., :class:`ArraysDataStream`.

        >>> x = np.arange(5, dtype=np.int32)
        >>> y = x ** 2
        >>> stream = DataStream.arrays([x, y], batch_size=3)
        >>> for [a, b] in stream:
        ...     print(a, b)
        [0 1 2] [0 1 4]
        [3 4] [ 9 16]

        You may shuffle the data by setting `shuffle = True`:

        >>> np.random.seed(1234)
        >>> stream = DataStream.arrays([x, y], batch_size=3, shuffle=True)
        >>> for [a, b] in stream:
        ...     print(a, b)
        [4 0 1] [16  0  1]
        [2 3] [4 9]

        You may discard the last incomplete mini-batch by setting
        `skip_incomplete = True`:

        >>> stream = DataStream.arrays(
        ...     [x, y], batch_size=3, skip_incomplete=True)
        >>> for [a, b] in stream:
        ...     print(a, b)
        [0 1 2] [0 1 4]

        Args:
            arrays: A sequence of numpy-like arrays.
                These arrays should be at least 1-d, and the size of the
                first axis must be identical.
            batch_size: The number of data within each mini-batch.
            shuffle: Whether or not to shuffle data?
            skip_incomplete: Whether or not to exclude the last mini-batch
                if it is incomplete?
            random_state: The numpy random state instance.

        Returns:
            The arrays stream.
        """
        return ArraysDataStream(
            arrays=arrays,
            batch_size=batch_size,
            shuffle=shuffle,
            skip_incomplete=skip_incomplete,
            random_state=random_state
        )

    @staticmethod
    def int_seq(start: int,
                stop: int = None,
                step: int = None,
                *,
                dtype=np.int32,
                batch_size: int = NOT_SET,
                shuffle: bool = False,
                skip_incomplete: bool = False,
                random_state: Optional[np.random.RandomState] = None
                ) -> 'IntSeqDataStream':
        """
        Construct a integer sequence stream, i.e., :class:`IntSeqStream`.

        To construct various integer sequences:

        >>> stream = DataStream.int_seq(5, batch_size=3)
        >>> for [a] in stream:
        ...     print(a)
        [0 1 2]
        [3 4]

        >>> stream = DataStream.int_seq(2, 11, 2, batch_size=3)
        >>> for [a] in stream:
        ...     print(a)
        [2 4 6]
        [ 8 10]

        >>> stream = DataStream.int_seq(-5, step=-1, batch_size=3)
        >>> for [a] in stream:
        ...     print(a)
        [ 0 -1 -2]
        [-3 -4]

        >>> stream = DataStream.int_seq(-2, -11, -2, batch_size=3)
        >>> for [a] in stream:
        ...     print(a)
        [-2 -4 -6]
        [ -8 -10]

        You may shuffle the sequence by setting `shuffle = True`:

        >>> np.random.seed(1234)
        >>> stream = DataStream.int_seq(5, batch_size=3, shuffle=True)
        >>> for [a] in stream:
        ...     print(a)
        [4 0 1]
        [2 3]

        You may discard the last incomplete mini-batch by setting
        `skip_incomplete = True`:

        >>> stream = DataStream.int_seq(5, batch_size=3, skip_incomplete=True)
        >>> for [a] in stream:
        ...     print(a)
        [0 1 2]

        Args:
            start: If `stop` is specified, this is the starting number.
                Otherwise this is the ending number, and the starting
                number is 0.
            stop: The ending number.
            step: The sequence incremental step.
            dtype: The NumPy data type.
            batch_size: The number of data within each mini-batch.
            shuffle: Whether or not to shuffle data?
            skip_incomplete: Whether or not to exclude the last mini-batch
                if it is incomplete?
            random_state: The numpy random state instance.

        Returns:
            The integer sequence stream.
        """
        return IntSeqDataStream(
            start=start, stop=stop, step=step, dtype=dtype,
            batch_size=batch_size, shuffle=shuffle,
            skip_incomplete=skip_incomplete, random_state=random_state,
        )

    @staticmethod
    def gather(streams: Iterable['DataStream'],
               random_state: Optional[np.random.RandomState] = None
               ) -> 'GatherDataStream':
        return GatherDataStream(streams=streams, random_state=random_state)

    @staticmethod
    def generator(f: Callable[[], ArraysOrArrayGenerator]
                  ) -> 'GeneratorFactoryDataStream':
        return GeneratorFactoryDataStream(f)

    # -------- here starts the transforming methods --------
    def map(self,
            mapper: Callable[..., ArraysOrArray],
            preserve_shapes: bool = False
            ) -> 'MapperDataStream':
        """
        Transform this data stream via a mapper function.

        To return a single array:

        >>> def mapper(x, y):
        ...     return x + y

        >>> x = np.arange(0, 5, dtype=np.int32)
        >>> y = np.arange(5, 10, dtype=np.int32)
        >>> stream = DataStream.arrays([x, y], batch_size=3).map(mapper)
        >>> for [a] in stream:
        ...     print(a)
        [5 7 9]
        [11 13]

        To return a tuple / list of arrays:

        >>> def mapper(x, y):
        ...     return x + y, x * y  # or return [x + y, x * y]

        >>> x = np.arange(0, 5, dtype=np.int32)
        >>> y = np.arange(5, 10, dtype=np.int32)
        >>> stream = DataStream.arrays([x, y], batch_size=3).map(mapper)
        >>> for [a, b] in stream:
        ...     print(a, b)
        [5 7 9] [ 0  6 14]
        [11 13] [24 36]

        Args:
            mapper: The mapper function.
            preserve_shapes: User specified hint, whether or not the
                `mapper` preserves the array count and shapes within
                each mini-batch?  This hint might benefit further
                transformation.  By default :obj:`False`.

                >>> def mapper(x, y):
                ...     return x ** 2, y - 1

                >>> x = np.random.normal(size=[5, 4])
                >>> y = np.random.normal(size=[5, 3, 2])
                >>> stream = DataStream.arrays([x, y], batch_size=3)
                >>> stream.array_count, stream.data_shapes
                (2, ((4,), (3, 2)))

                >>> stream2 = stream.map(mapper)
                >>> stream2.array_count, stream2.data_shapes
                (None, None)

                >>> stream3 = stream.map(mapper, preserve_shapes=True)
                >>> stream3.array_count, stream3.data_shapes
                (2, ((4,), (3, 2)))

        Returns:
            The transformed data stream.
        """
        return MapperDataStream(
            source=self, mapper=mapper, preserve_shapes=preserve_shapes)

    def threaded(self, prefetch: int = 5) -> 'ThreadingDataStream':
        """
        Construct a data stream that prefetches this data stream in a
        background thread.

        >>> stream = DataStream.int_seq(5, batch_size=3)
        >>> with stream.threaded() as prefetch_stream:
        ...     for [x] in prefetch_stream:
        ...         print(x)
        [0 1 2]
        [3 4]

        Args:
            prefetch: Number of mini-batches to prefetch in background.

        Returns:
            The background data stream.
        """
        return ThreadingDataStream(self, prefetch=prefetch)

    def select(self, indices: Iterable[int]) -> 'MapperDataStream':
        """
        Construct a data stream that selects a subset of the arrays within
        each mini-batch, or re-order the arrays.

        Given the following source data stream:

        >>> x = np.arange(0, 5, dtype=np.int32)
        >>> y = np.arange(5, 10, dtype=np.int32)
        >>> z = np.arange(10, 15, dtype=np.int32)
        >>> source = DataStream.arrays([x, y, z], batch_size=3)

        We shall select [x, z, x] from source:

        >>> stream = source.select([0, 2, 0])
        >>> for [a, b, c] in stream:
        ...     print(a, b, c)
        [0 1 2] [10 11 12] [0 1 2]
        [3 4] [13 14] [3 4]

        The various data stream properties are also properly inherited:

        >>> x = np.random.normal(size=[5, 4])
        >>> y = np.random.normal(size=[5, 2, 3])
        >>> source = DataStream.arrays([x, y], batch_size=3)
        >>> stream = source.select([-1, 0, 1])
        >>> stream.array_count
        3
        >>> stream.data_shapes
        ((2, 3), (4,), (2, 3))
        >>> stream.data_length
        5

        Args:
            indices: The indices of the arrays to select within each mini-batch.

        Returns:
            The transformed data stream.

        Raises:
            IndexError: If `self.array_count` is reported, and any index
                in `indices` out of this range.

                >>> x = np.arange(0, 5, dtype=np.int32)
                >>> y = np.arange(5, 10, dtype=np.int32)
                >>> stream = DataStream.arrays([x, y], batch_size=3)
                >>> stream.select([0, 1, 2])
                Traceback (most recent call last):
                    ...
                IndexError: array index out of range

                Note if `self.array_count` is not reported (i.e., is None),
                then :class:`IndexError` will not be raised until iterated.

                >>> def mapper(x, y, z):
                ...     return x + y, y - z

                >>> x = np.arange(0, 5, dtype=np.int32)
                >>> y = np.arange(5, 10, dtype=np.int32)
                >>> z = np.arange(10, 15, dtype=np.int32)
                >>> stream = DataStream.arrays([x, y, z], batch_size=3). \
                        map(mapper).select([0, 1, 2])
                >>> for batch in stream:
                ...     print(batch)
                Traceback (most recent call last):
                    ...
                IndexError: tuple index out of range
        """
        # validate the argument
        indices = tuple(indices)
        if self.array_count is not None:
            for i in indices:
                if i < -self.array_count or i >= self.array_count:
                    raise IndexError(f'array index out of range')

        # prepare for the mapper
        def mapper(*arrays):
            return tuple(arrays[j] for j in indices)

        # construct the mapper data stream
        if self.data_shapes is not None:
            data_shapes = tuple(self.data_shapes[i] for i in indices)
        else:
            data_shapes = None

        array_count = len(indices)

        return MapperDataStream(
            source=self, mapper=mapper, data_shapes=data_shapes,
            array_count=array_count
        )


class ArraysDataStream(DataStream):
    """NumPy arrays data stream."""

    def __init__(self,
                 arrays: Iterable[Array],
                 batch_size: int,
                 shuffle: bool,
                 skip_incomplete: bool,
                 random_state: Optional[np.random.RandomState] = None):
        # validate parameters
        arrays = tuple(arrays)
        if not arrays:
            raise ValueError('`arrays` must not be empty.')
        for a in arrays:
            if not hasattr(a, 'shape'):
                raise ValueError('`arrays` must be arrays.')
            if len(a.shape) < 1:
                raise ValueError('`arrays` must be at least 1-d arrays.')

        data_shapes = to_data_shapes(arr.shape[1:] for arr in arrays)

        array_length = len(arrays[0])
        for a in arrays[1:]:
            if len(a) != array_length:
                raise ValueError('`arrays` must have the same length.')
        if skip_incomplete:
            data_length = array_length // batch_size * batch_size
        else:
            data_length = array_length

        # construct the instance
        super().__init__(
            batch_size=batch_size,
            array_count=len(data_shapes),
            data_shapes=data_shapes,
            data_length=data_length,
            random_state=random_state,
        )
        self._arrays = map_to_tuple(to_readonly_array, arrays)
        self._indices_buffer = None  # type: Array
        self._shuffle = bool(shuffle)
        self._skip_incomplete = bool(skip_incomplete)

    @property
    def the_arrays(self):
        """Get the underlying NumPy arrays without copy."""
        return self._arrays

    @property
    def shuffle(self) -> bool:
        """Whether or not to shuffle data?"""
        return self._shuffle

    @property
    def skip_incomplete(self) -> bool:
        """Whether or not to exclude the last mini-batch if it is incomplete?"""
        return self._skip_incomplete

    def _minibatch_iterator(self) -> Generator[ArrayTuple, None, None]:
        # shuffle the source arrays if necessary
        if self.shuffle:
            if self._indices_buffer is None:
                indices_count = len(self._arrays[0])
                t = np.int32 if indices_count < (1 << 31) else np.int64
                self._indices_buffer = np.arange(indices_count, dtype=t)

            rng = self._random_state or np.random
            rng.shuffle(self._indices_buffer)

            def get_slice(s):
                return tuple(
                    a[self._indices_buffer[s]]
                    for a in self.the_arrays
                )
        else:
            def get_slice(s):
                return tuple(a[s] for a in self.the_arrays)

        # now iterator through the mini-batches
        for batch_s in minibatch_slices_iterator(
                length=self.data_length,
                batch_size=self.batch_size,
                skip_incomplete=self.skip_incomplete):
            yield get_slice(batch_s)

    def copy(self, **kwargs):
        return self._copy_helper(
            ('batch_size', 'shuffle', 'skip_incomplete', 'random_state'),
            arrays=self._arrays,
            **kwargs
        )


class IntSeqDataStream(DataStream):
    """Integer sequence data stream."""

    def __init__(self,
                 start: int,
                 stop: int = None,
                 step: int = None,
                 *,
                 dtype=np.int32,
                 batch_size: int = NOT_SET,
                 shuffle: bool = False,
                 skip_incomplete: bool = False,
                 random_state: Optional[np.random.RandomState] = None):
        # validate the arguments
        start = int(start)

        if stop is None:
            stop = start
            start = 0
        else:
            stop = int(stop)

        if step is None:
            step = 1
        else:
            step = int(step)

        dtype = np.dtype(dtype)

        if batch_size is NOT_SET:
            raise ValueError('`batch_size` is required.')

        # construct the int sequence
        seq = np.arange(start=start, stop=stop, step=step, dtype=dtype)