Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import time
from dataclasses import dataclass
from datetime import datetime
from enum import IntFlag
from logging import getLogger
from typing import *
import numpy as np
from .checkpoint import BaseCheckpoint, CheckpointManager
from .errors import NaNMetricError
from .formatting import MetricsFormatter, format_duration, format_as_asctime
from .logging_ import print_with_time
from .metrics import ScalarMetricsLogger, ScalarMetricCollector
from .mlstorage import ExperimentDoc
from .stateful import StatefulObjectGroup, StatefulObject
from .utils import NOT_SET
__all__ = [
'CallbackData', 'Callback', 'CallbackList',
'LoggerMode', 'LoggerCallback', 'StopOnNaN',
'BaseTrainCallback', 'BaseCheckpointCallback',
'AutoCheckpoint', 'EarlyStopping',
]
@dataclass
class CallbackData(object):
"""
Data carried by a cycle begin/end event from :class:`Callback`.
"""
__slots__ = ('stage', 'index', 'size', 'start_timestamp',
'end_timestamp', 'exc_time', 'metrics')
stage: 'Stage'
"""The stage that calls the callback."""
index: Optional[int]
"""Index of the epoch or batch, start from 1."""
size: Optional[int]
"""The size of the batch."""
start_timestamp: float
"""Start timestamp of the stage/epoch/batch."""
end_timestamp: Optional[float]
"""End timestamp of the stage/epoch/batch, available at the cycle end."""
exc_time: Optional[float]
"""Execution time of the stage/epoch/batch, available at the cycle end."""
metrics: Optional[Dict[str, Any]]
"""Metrics dict, available at the cycle end."""
class Callback(object):
"""Base class of a callback for a machine learning stage."""
priority: int = 0
"""
The priority of the callback. Smaller priority indicates the callback
should be called earlier than other callbacks with larger priorities.
"""
###########
# metrics #
###########
def on_metrics(self, data: CallbackData):
pass # pragma: no cover
##################
# general events #
##################
def on_stage_begin(self, data: CallbackData):
pass # pragma: no cover
def on_stage_end(self, data: CallbackData):
pass # pragma: no cover
def on_epoch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_epoch_end(self, data: CallbackData):
pass # pragma: no cover
def on_batch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_batch_end(self, data: CallbackData):
pass # pragma: no cover
################
# train events #
################
def on_train_begin(self, data: CallbackData):
pass # pragma: no cover
def on_train_end(self, data: CallbackData):
pass # pragma: no cover
def on_train_epoch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_train_epoch_end(self, data: CallbackData):
pass # pragma: no cover
def on_train_batch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_train_batch_end(self, data: CallbackData):
pass # pragma: no cover
#####################
# validation events #
#####################
def on_validation_begin(self, data: CallbackData):
pass # pragma: no cover
def on_validation_end(self, data: CallbackData):
pass # pragma: no cover
def on_validation_batch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_validation_batch_end(self, data: CallbackData):
pass # pragma: no cover
###############
# test events #
###############
def on_test_begin(self, data: CallbackData):
pass # pragma: no cover
def on_test_end(self, data: CallbackData):
pass # pragma: no cover
def on_test_batch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_test_batch_end(self, data: CallbackData):
pass # pragma: no cover
##################
# predict events #
##################
def on_predict_begin(self, data: CallbackData):
pass # pragma: no cover
def on_predict_end(self, data: CallbackData):
pass # pragma: no cover
def on_predict_batch_begin(self, data: CallbackData):
pass # pragma: no cover
def on_predict_batch_end(self, data: CallbackData):
pass # pragma: no cover
class CallbackList(Sequence[Callback]):
"""
A callback list, which maintains the orders of callbacks according to
their priority.
"""
_SORTED = object()
def __init__(self,
callbacks: Optional[Iterator[Callback]] = None,
*,
_sorted=None):
if callbacks is not None:
if _sorted is not self._SORTED:
callbacks = sorted(callbacks, key=lambda cb: cb.priority)
else:
callbacks = list(callbacks)
self._callbacks = callbacks
def __len__(self) -> int:
return len(self._callbacks)
def __iter__(self):
return iter(self._callbacks)
def __eq__(self, other):
return isinstance(other, CallbackList) and \
self._callbacks == other._callbacks
def __getitem__(self, item):
return self._callbacks[item]
def __delitem__(self, item):
del self._callbacks[item]
def __copy__(self):
return self.clone()
def clone(self) -> 'CallbackList':
return CallbackList(self._callbacks, _sorted=self._SORTED)
def add(self, callback: Callback):
"""
Add a callback to this list, respecting the `priority`.
Args:
callback: The callback object.
"""
i = len(self._callbacks) - 1
while i > -1:
if self._callbacks[i].priority <= callback.priority:
break
i -= 1
self._callbacks.insert(i + 1, callback)
def remove(self, callback: Callback):
"""
Remove a callback from this list.
Args:
callback: The callback to be removed.
Raises:
ValueError: If `callback` is not present.
"""
self._callbacks.remove(callback)
@dataclass
class _LoggerContext(object):
"""The context of an open stage in :class:`LoggerCallback`."""
__slots__ = ('stage', 'progress', 'metrics_collector', 'batch_metrics',
'last_console_log_time', 'last_remote_push_time')
stage: 'Stage'
progress: Dict[str, Any]
metrics_collector: ScalarMetricsLogger
"""
Metrics logger to accumulate the mean and std of metrics. This logger
will be cleared at the beginning when `on_epoch_begin` is called.
For validation, test and predict, this should effectively accumulate
the metrics throughout the whole stage, since the `on_epoch_begin`
callback will never be called.
"""
batch_metrics: Dict[str, Any]
"""
The current batch metrics. Will be cleared after each batch.
"""
last_console_log_time: float
"""Last time that the logs have been written to console."""
last_remote_push_time: float
"""Last time that the logs have been pushed to remote."""
@staticmethod
def new_context(stage) -> '_LoggerContext':
now_time = time.time()
return _LoggerContext(
stage=stage,
progress={},
metrics_collector=ScalarMetricsLogger(),
batch_metrics={},
# set these two log times as the current time, such that these
# logs will not be written immediately after the stage begins.
last_console_log_time=now_time,
last_remote_push_time=now_time,
)
def update_metrics(self,
metrics: Mapping[str, Any],
replace: bool = False,
batch_size: Optional[float] = None) -> None:
"""
Update the epoch metrics logger and batch metrics dict (if a batch
is currently active) according to `metrics`.
Args:
metrics: The batch, epoch or stage metrics from stage callback.
replace: Whether to replace the epoch/stage metrics
instead of updating them.
batch_size: The batch size information from stage callback.
"""
# We expect the metrics to be scalars. If not, we shall take average.
raw_metrics = {}
averaged_metrics = {}
if metrics:
for key, val in metrics.items():
key = self.stage.type.add_metric_prefix(key)
if np.shape(val) == ():
averaged_metrics[key] = val
else:
raw_metrics[key] = val
updater = self.metrics_collector.replace \
if replace else self.metrics_collector.update
updater(raw_metrics)
updater(averaged_metrics, weight=batch_size or 1.)
# if inside a batch, update the batch metrics dict
if self.stage.batch.is_active:
self.batch_metrics.update(averaged_metrics)
self.batch_metrics.update(
{k: np.mean(v) for k, v in raw_metrics.items()})
def copy_metrics_from_nested_context(self, ctx: '_LoggerContext'):
"""
Copy the final metrics from nested stage.
Args:
ctx: The nested stage context.
"""
# obtain the final metrics from the nested context
nested_metrics = ctx.metrics_collector.to_json(mean_only=True)
# if currently a batch is active, update the batch metrics
if self.stage.batch.is_active:
self.batch_metrics.update(nested_metrics)
# update the final metrics
self.metrics_collector.update(nested_metrics)
def next_epoch(self):
"""Reset the internal states and enter the next epoch."""
self.metrics_collector.clear()
self.batch_metrics.clear()
def next_batch(self):
"""Reset the internal states and enter the next batch."""
self.batch_metrics.clear()
def _console_writer(s: str) -> None:
sys.stdout.write(s)
sys.stdout.flush()
def _print_log(console_writer: Optional[Callable[[str], None]],
text: str,
nl: bool = True,
show_time: bool = True):
if console_writer is not None:
if show_time:
time_str = format_as_asctime(datetime.now())
text = f'[{time_str}] {text}'
if nl:
text += '\n'
console_writer(text)
class LoggerMode(IntFlag):
"""Integer flags of logger mode."""
NONE = 0x0
LOG_START_END = 0x1
"""Log at the stage start/end."""
LOG_EVERY_EPOCH = 0x2
"""Log at every epoch."""
LOG_MAJOR = LOG_START_END | LOG_EVERY_EPOCH
"""Log at the stage start/end and at every epoch."""
LOG_EVERY_FEW_BATCHES = 0x4
"""Log after every few batches."""
LOG_EVERY_FEW_SECONDS = 0x8
"""Log every few seconds."""
DEFAULT = LOG_MAJOR | LOG_EVERY_FEW_SECONDS
"""Default log mode."""
def check_integrity(self):
if LoggerMode.LOG_EVERY_FEW_SECONDS in self and \
LoggerMode.LOG_EVERY_FEW_BATCHES in self:
raise ValueError(
'`LOG_EVERY_FEW_SECONDS` and `LOG_EVERY_FEW_BATCHES` '
'cannot be both enabled.'
)
class LoggerCallback(Callback):
"""
Callback that logs training/testing/predicting progress and metrics
to console and to MLStorage server.
For performance considerations, batch metrics and progress information
will be written to console every ``console_log_interval`` seconds,
and sent to server every ``remote_log_interval`` seconds.
The progress info will be stored as `progress.<stage.type>` field, and
the batch metrics will be stored in `progress.<stage.type>.batch_metrics`
field. Stages with different types thus will not override the progress
information and batch metrics of each other.
Batch metrics will be accumulated by :class:`MetricsLogger`, and reported
at the end of the epoch. If the epoch callback provides metrics with the
same names as the batch metrics, the epoch metrics will override the batch
metrics. These metrics are the epoch metrics.
Moreover, metrics provided by the stage end callback are the stage metrics.
Epoch metrics and stage metrics will be stored in the `result` field.
For epoch and stage metrics of the train stage, the metrics will be saved
as-is; but for other stages, the metrics names will be enforced to have
the following prefix:
* validation stage: "val_" or "valid_".
* test stage: "test_"
* predict stage: "pred_" or "predict_"
For nested stages (e.g., validation stage inside a train stage), the
progress and metrics of the inner stages will not be written to the
console, but will indeed be sent to the server.
"""
# a sufficiently large value, should run after almost all callbacks
priority = 999999
_ctx_stack: List[_LoggerContext]
"""The stack of :class:`_LoggerContext`, one for every :class:`Stage`."""
console_mode: LoggerMode
"""The console logger mode."""
console_writer: Optional[Callable[[str], None]]
"""The console writer."""
console_log_batch_freq: int
"""Write batch progress and metrics every this number of batches."""
console_log_interval: float
"""Write batch progress and metrics every this number of seconds."""
remote_doc: Optional[ExperimentDoc]
"""The :class:`ExperimentDoc`, where to push progress and metrics."""
remote_push_interval: float
"""Push updates to the remote every this number of seconds."""
enabled: bool
"""Whether or not this :class:`LoggerCallback` is enabled?"""
def __init__(self,
console_mode: LoggerMode = LoggerMode.DEFAULT,
console_writer: Optional[
Callable[[str], None]] = _console_writer,
console_log_batch_freq: int = 100,
console_log_interval: float = 10.,
remote_doc: Optional[ExperimentDoc] = NOT_SET,
remote_push_interval: float = 60.,
metrics_formatter: MetricsFormatter = MetricsFormatter()):
"""
Construct a new :class:`LoggerCallback`.
Args:
console_mode: Mode of console log.
console_writer: The console writer.
console_log_batch_freq: Log to console every this number of batches,
if `LOG_EVERY_FEW_BATCHES` is enabled in `console_mode`.
console_log_interval: Log to console every this number of seconds,
if `LOG_EVERY_FEW_SECONDS` is enabled in `console_mode`.
remote_doc: The remote doc object, where to push updates.
remote_push_interval: Push to remote every this number of seconds.
metrics_formatter: The metrics formatter.
"""
# check the argument
console_mode.check_integrity()
# get the remote document according to the context and the environment
if remote_doc is NOT_SET:
remote_doc = ExperimentDoc.default_doc()
self._ctx_stack = []
self.console_mode = console_mode
self.console_writer = console_writer
self.console_log_batch_freq = console_log_batch_freq
self.console_log_interval = console_log_interval
self.remote_doc = remote_doc
self.remote_push_interval = remote_push_interval
self.metrics_formatter = metrics_formatter
self._enabled = self.remote_doc is not None or bool(self.console_mode)
@property
def enabled(self) -> bool:
"""Whether or not this logger callback is enabled?"""
return self._enabled
@property
def in_nested_stage(self) -> bool:
"""Whether or not this logger callback is in nested stage?"""
return len(self._ctx_stack) > 1
@property
def ctx(self) -> _LoggerContext:
"""Get the current active context (at the top of context stack)."""
return self._ctx_stack[-1]
@property
def stage(self) -> 'Stage':
"""Get the current active stage (at the top of context stack)."""
return self.ctx.stage
def _should_write_start_end_console_log(self) -> bool:
return (not self.in_nested_stage and
LoggerMode.LOG_START_END in self.console_mode)
def _should_write_epoch_console_log(self) -> bool:
return (not self.in_nested_stage and
LoggerMode.LOG_EVERY_EPOCH in self.console_mode)
def _should_write_batch_console_log(self,
batch_id: int,
end_timestamp: float) -> bool:
# if we are now in a nested stage, we shall never write batch log
if self.in_nested_stage:
return False
# if the epoch log is enabled, and this is the final batch, we
# shall write epoch log instead of the batch log.
if (LoggerMode.LOG_EVERY_EPOCH in self.console_mode and
self.stage.epoch is not None and
batch_id == self.stage.batch.total):
return False
# if the best validation mark is True, write batch log
if self.stage.best_validation_mark:
return True
# ordinary checks for the batch
if (LoggerMode.LOG_EVERY_FEW_BATCHES in self.console_mode and
batch_id % self.console_log_batch_freq == 0):
return True
if (LoggerMode.LOG_EVERY_FEW_SECONDS in self.console_mode and
end_timestamp - self.ctx.last_console_log_time >=
self.console_log_interval):
return True
# no log is required to be written now
return False
def _should_push_batch_remote_log(self,
batch_id: int,
end_timestamp: float) -> bool:
return (end_timestamp - self.ctx.last_remote_push_time >=
self.remote_push_interval)
def _push_to_remote(self, result: Optional[Dict[str, Any]] = None):
payload = {
f'progress.{self.stage.name}': self.ctx.progress
}
if result:
payload['result'] = result
self.remote_doc.update(payload)
self.ctx.last_remote_push_time = time.time()
def _write_stage_or_epoch_end_console_log(
self,
result_dict: Optional[Dict[str, Any]],
prefix: str = '',
suffix: str = '',
show_time: bool = False,
is_stage_end: bool = False) -> None:
# first, compose the log line
buf = []
# - <prefix>
if prefix:
buf.append(prefix)
# - <metrics>
if result_dict:
result_str = self.metrics_formatter.format(
result_dict,
sep=(': ', ' - '),
known_names=self.stage.known_metrics
)
buf.append(result_str)
# - <suffix>
if suffix:
buf.append(suffix)
log_line = ' - '.join(buf)
# - " (*)" mark
if not is_stage_end and self.stage.best_validation_mark:
log_line += ' (*)'
# then, print the log
_print_log(self.console_writer, log_line, show_time=show_time)
self.ctx.last_console_log_time = time.time()
def _batch_console_head(self, batch=None) -> str:
# the batch counter
max_batch = str(self.ctx.progress.get('max_batch', ''))
if batch is None:
batch = str(self.ctx.progress.get('batch', ''))
if max_batch:
return f'{batch:>{len(max_batch)}s}/{max_batch}'
return batch
def _update_progress_time_info(self, end_time: Optional[float]):
# update elapsed
if end_time is not None:
self.ctx.progress['elapsed'] = end_time - self.stage.start_timestamp
# update eta
eta = self.stage.get_eta()
if eta is not None and eta > 1e-7:
self.ctx.progress['eta'] = eta
else:
self.ctx.progress.pop('eta', None)
def on_metrics(self, data: CallbackData):
if not data.stage.is_active and self.remote_doc is not None:
# some immediate metrics outside a loop context
m_logger = ScalarMetricsLogger()
m_logger.update(data.metrics)
payload = {'result': m_logger.to_json()}
self.remote_doc.update(payload)
def on_stage_begin(self, data: CallbackData):
self._ctx_stack.append(_LoggerContext.new_context(data.stage))
# write console log
if self._should_write_start_end_console_log():
_print_log(
self.console_writer,
f'{self.stage.name.capitalize()} started',
show_time=True
)
# start the remote doc worker if this is the first stage
if len(self._ctx_stack) == 1 and self.remote_doc is not None:
self.remote_doc.start_worker()
def on_stage_end(self, data: CallbackData):
try:
# set the progress info
self._update_progress_time_info(data.end_timestamp)
# replace the epoch metrics with stage metrics, if provided
if data.metrics:
self.ctx.update_metrics(data.metrics, replace=True)
# obtain the stage result dict
stage_result = self.ctx.metrics_collector.to_json()
# write the console log
if self._should_write_start_end_console_log():
log_prefix = f'{self.stage.name.capitalize()} finished'
if data.exc_time is not None:
elapsed_str = format_duration(
data.exc_time, precision=1, count_down=True)
log_prefix += f' in {elapsed_str}'
self._write_stage_or_epoch_end_console_log(
result_dict=stage_result,
prefix=log_prefix,
suffix='',
show_time=True,
is_stage_end=True,
)
# push to remote
if self.remote_doc is not None:
self._push_to_remote(stage_result)
finally:
# pop this stage
if len(self._ctx_stack) > 1:
self._ctx_stack[-2].copy_metrics_from_nested_context(self.ctx)
self._ctx_stack.pop()
# stop the remote doc worker if there is no context left
if not self._ctx_stack and self.remote_doc is not None:
self.remote_doc.stop_worker()
def on_epoch_begin(self, data: CallbackData):
# set the progress info
self.ctx.progress['epoch'] = data.index
if data.stage.epoch.total is not None:
self.ctx.progress['max_epoch'] = data.stage.epoch.total
# set the context to enter next epoch
self.ctx.next_epoch()
# write epoch beginning log
if self._should_write_epoch_console_log():
_print_log(self.console_writer, f'Epoch {data.stage.epoch}',
show_time=False)
def on_epoch_end(self, data: CallbackData):
# set the progress info
self._update_progress_time_info(data.end_timestamp)
if data.exc_time is not None:
self.ctx.progress['epoch_time'] = data.exc_time
# We use the metric values provided in `data.metrics` as the final
# metric values for the epoch, to replace any batch metrics.
self.ctx.update_metrics(data.metrics, replace=True)
epoch_result = self.ctx.metrics_collector.to_json()
# write the console log
if self._should_write_epoch_console_log():
# log_prefix: total number of executed batches + exc_time
batch = self.ctx.progress.get('batch', None)
log_prefix = f'{batch} iters'
if data.exc_time:
elapsed_str = format_duration(
data.exc_time, precision=1, count_down=True)
log_prefix += f' in {elapsed_str}'
# eta
eta = self.stage.get_eta()
if eta is not None:
# just to be consistent with the format of batch logs
log_prefix += f' - eta {format_duration(eta, count_down=True)}'
self._write_stage_or_epoch_end_console_log(
result_dict=epoch_result,
prefix=log_prefix,
suffix='',
)
# push to remote log
if self.remote_doc is not None:
self._push_to_remote(epoch_result)
def on_batch_begin(self, data: CallbackData):
self.ctx.progress['batch'] = data.index
if data.stage.batch.total is not None:
self.ctx.progress['max_batch'] = data.stage.batch.total
self.ctx.progress.pop('batch_metrics', None)
# set the context to enter next batch
self.ctx.next_batch()
def on_batch_end(self, data: CallbackData):
# update the progress info
self._update_progress_time_info(data.end_timestamp)
if data.exc_time is not None:
self.ctx.progress['batch_time'] = data.exc_time
# update the metrics
self.ctx.update_metrics(data.metrics, batch_size=data.size)
# obtain the results of the batch
batch_result = self.ctx.batch_metrics
# Copy the batch metrics to the progress dict.
# This assignment will be cleared at the beginning of the next batch.
self.ctx.progress['batch_metrics'] = batch_result
# write logs to console
if self._should_write_batch_console_log(data.index,
data.end_timestamp):
buf = [self._batch_console_head()]
if 'eta' in self.ctx.progress:
eta_str = format_duration(self.ctx.progress["eta"],
count_down=True)
buf.append(f'eta {eta_str}')
if batch_result:
result_str = self.metrics_formatter.format(
batch_result,
sep=(': ', ' - '),
known_names=self.stage.known_metrics,
)
buf.append(result_str)
log_line = ' - '.join(buf)
if self.stage.best_validation_mark:
log_line += ' (*)'
_print_log(self.console_writer, log_line, show_time=False)
self.ctx.last_console_log_time = time.time()
# push the logs to remote
if self.remote_doc is not None and \
self._should_push_batch_remote_log(data.index,
data.end_timestamp):
self._push_to_remote(batch_result)
class StopOnNaN(Callback):
"""
Callback that raises :class:`NaNMetricError` whenever an NaN metric
has been encountered.
"""
# its priority should be even larger than the LoggerCallback, such that
# the NaN metrics would be printed before exiting on NaNs
priority = LoggerCallback.priority + 1
def _check_metrics(self, metrics: Optional[Mapping[str, Any]]):
if metrics:
for key, val in metrics.items():
if np.isnan(val):
raise NaNMetricError(key)
def on_batch_end(self, data: CallbackData):
self._check_metrics(data.metrics)
def on_epoch_end(self, data: CallbackData):
self._check_metrics(data.metrics)
def on_stage_end(self, data: CallbackData):
self._check_metrics(data.metrics)
class BaseTrainCallback(Callback):
"""
Base callback class for train stages.
Binds to the first train stage. If the first stage that this callback
encounters is not a train stage, then an error will be raised.
If a subclass need to override :meth:`on_stage_begin()` or
:meth:`on_stage_end()`, they should call the parent's method.
For other event callbacks, they need to verify whether or not ``data.stage``
equals to ``self.stage``.
"""
stage: Optional['Stage'] = None
"""The current active train stage."""
def on_stage_begin(self, data: CallbackData):
if self.stage is None:
if data.stage.type != StageType.TRAIN:
raise RuntimeError(
f'The outer stage of `{self.__class__.__qualname__}` must '
f'be a train stage: got {data.stage.name} stage '
f'{data.stage!r}')
self.stage = data.stage # bind to this train stage
def on_stage_end(self, data: CallbackData):
if data.stage == self.stage:
self.stage = None # unbind from the current stage
class BaseCheckpointCallback(BaseTrainCallback):
"""
Base class for checkpoint callbacks.
Checkpoint callbacks are train callbacks, which will only work for a
train stage. Sub-classes should check ``if self.stage == data.stage``
in any overrided method.
"""
STAGE_STATE_KEY: str = '__stage'
"""State key that stores the stage states."""
checkpoint: BaseCheckpoint
"""The checkpoint object."""
root_dir: str
"""The root directory, where to save checkpoints."""
state_objects: Dict[str, StatefulObject]
"""The state objects to be saved along with checkpoints."""
max_checkpoints_to_keep: Optional[int]
"""
Maximum number of checkpoints to keep.
:obj:`None` means that all checkpoints will be kept.
"""
save_stage_state: bool
"""Whether or not to save the stage state?"""
checkpoint_manager: Optional[CheckpointManager] = None
"""The checkpoint manager instance."""
def __init__(self,
checkpoint: BaseCheckpoint,
root_dir: str,
state_objects: Optional[Mapping[str, StatefulObject]] = None,
max_checkpoints_to_keep: Optional[int] = None,
save_stage_state: bool = True):
"""
Construct a new :class:`BaseCheckpointCallback`.
Args:
checkpoint: The checkpoint object.
root_dir: The root directory, where to save checkpoints.
state_objects: The state objects to be saved along with checkpoints.
max_checkpoints_to_keep: Maximum number of checkpoints to keep.
Defaults to :obj:`None`, where all checkpoints will be kept.
save_stage_state: Whether or not to save stage state?
"""
# check the argument `state_objects`
state_objects = {k: state_objects[k] for k in (state_objects or ())}
for k in state_objects:
if k == self.STAGE_STATE_KEY:
raise ValueError(f'State object key {k!r} is reserved.')
v = state_objects[k]
if not isinstance(v, StatefulObject):
raise ValueError(f'The item {k!r} in `state_objects` is not '
f'a StatefulObject: got {v!r}')
# memorize the argument
self.checkpoint = checkpoint
self.root_dir = os.path.abspath(root_dir)
self.state_objects = state_objects
self.max_checkpoints_to_keep = max_checkpoints_to_keep
self.save_stage_state = save_stage_state
def on_stage_begin(self, data: CallbackData):
super().on_stage_begin(data)
if data.stage == self.stage:
if self.save_stage_state:
self.state_objects[self.STAGE_STATE_KEY] = \
data.stage.state_proxy()
self.checkpoint_manager = CheckpointManager(
checkpoint=self.checkpoint,
state_objects=StatefulObjectGroup(self.state_objects),
root_dir=self.root_dir,
max_to_keep=self.max_checkpoints_to_keep,
)
def on_stage_end(self, data: CallbackData):
super().on_stage_end(data)
if self.stage is None and self.checkpoint_manager is not None:
self.checkpoint_manager = None
self.state_objects.pop(self.STAGE_STATE_KEY, None)
def make_checkpoint(self):
epoch = self.stage.epoch.index
batch = self.stage.batch.index
ckpt_name = f'epoch-{epoch}-batch-{batch}'
ckpt_path = self.checkpoint_manager.save(ckpt_name)
getLogger(__name__).debug('Saved to checkpoint: %s', ckpt_path)
class AutoCheckpoint(BaseCheckpointCallback):
"""
Callback to save train checkpoints automatically.
"""
# priority is one larger than that of `EarlyStopping`, should run after it
priority = 1000
interval: Optional[float]
"""If not :obj:`None`, will save checkpoint every this number of seconds."""
epoch_freq: Optional[int]
"""If not :obj:`None`, will save checkpoint every this number of epochs."""
batch_freq: Optional[int]
"""If not :obj:`None`, will save checkpoint every this number of batches."""
restore_checkpoint: Union[str, bool]
"""
If :obj:`True`, restore the latest saved checkpoint from `root_dir` when
train begins. If a str, treat it as the path of a checkpoint, and restore
it when train begins.
"""
last_checkpoint_time: float
"""The timestamp when the last checkpoint was saved."""
def __init__(self,
checkpoint: BaseCheckpoint,
root_dir: str,
*,
interval: Optional[float] = None,
epoch_freq: Optional[int] = None,
batch_freq: Optional[int] = None,
state_objects: Optional[Mapping[str, StatefulObject]] = None,
max_checkpoints_to_keep: Optional[int] = None,
restore_checkpoint: Union[str, bool] = True):
"""
Construct a new :class:`AutoCheckpoint`.
Args:
checkpoint: The checkpoint object.
root_dir: The root directory, where to save checkpoints.
interval: If not :obj:`None`, will save checkpoint every this
number of seconds. One and only one of `interval`, `epoch_freq`
and `batch_freq` can be not :obj:`None`.
epoch_freq: If not :obj:`None`, will save checkpoint every this
number of epochs.
batch_freq: If not :obj:`None`, will save checkpoint every this
number of batches.
state_objects: The state objects to be saved along with checkpoints.
max_checkpoints_to_keep: Maximum number of checkpoints to keep.
Defaults to :obj:`None`, where all checkpoints will be kept.
restore_checkpoint: If :obj:`True`, restore the latest saved
checkpoint from `root_dir` when train begins.
If a str, treat it as the path of a checkpoint, and restore
it when train begins.
"""
not_none_count = (
int(interval is not None) + int(epoch_freq is not None) +
int(batch_freq is not None)
)
if not_none_count != 1:
raise ValueError('One and only one of `interval`, `epoch_freq` '
'and `batch_freq` should be specified.')
if not isinstance(restore_checkpoint, str) and \
restore_checkpoint not in (True, False):
raise TypeError(f'`restore_checkpoint` must be a str or a bool: '