# TraceAnomaly Detecting anomalous traces of microservice system. # Paper Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, Dan Pei. Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian Networks". 31th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2020 paper download(论文下载):https://netman.aiops.org/wp-content/uploads/2020/09/%E5%88%98%E5%B9%B3issre.pdf ## Dependencies Python == 3.6 ```shell pip install -r requirements.txt ``` ### Docker Image TraceAnomaly can be run directly in the Docker image: **silence1990/docker_for_traceanomaly:latest** ```bash docker pull silence1990/docker_for_traceanomaly:latest ``` ## Dataset Training set: train_ticket/train.zip Test normal traces: train_ticket/test_normal.zip Test anomalous traces: train_ticket/test_abnormal.zip ## Usage ```shell ./run.sh ``` ## Comparison of Learning Distribution ![image](https://github.com/NetManAIOps/TraceAnomaly/blob/master/traceanomaly/performance.png)