[![License](https://img.shields.io/badge/License-MIT-red.svg)](https://github.com/hanxiao0607/LogTAD/blob/main/LICENSE) ![Python 3.9](https://img.shields.io/badge/python-3.9-blue.svg) [![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2Fhanxiao0607%2FLogTAD&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false)](https://hits.seeyoufarm.com) # LogTAD: Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation A Pytorch implementation of [LogTAD](https://dl.acm.org/doi/abs/10.1145/3459637.3482209). ## Configuration - Ubuntu 20.04 - NVIDIA driver 460.73.01 - CUDA 11.2 - Python 3.9 - PyTorch 1.9.0 ## Installation This code requires the packages listed in requirements.txt. A virtual environment is recommended to run this code On macOS and Linux: ``` python3 -m pip install --user virtualenv python3 -m venv env source env/bin/activate pip install -r requirements.txt deactivate ``` Reference: https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/ ## Instructions LogTAD and other baseline models are implemented on [BGL](https://github.com/logpai/loghub/tree/master/BGL) and [Thunderbird](https://github.com/logpai/loghub/tree/master/Thunderbird) datasets Clone the template project, replacing ``my-project`` with the name of the project you are creating: git clone https://github.com/hanxiao0607/LogTAD.git my-project cd my-project Run and test: python3 main_LogTAD.py ## Citation ``` @inproceedings{han2021unsupervised, title={Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation}, author={Han, Xiao and Yuan, Shuhan}, booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management}, pages={3068--3072}, year={2021} } ```