import numpy as np import pandas as pd import re from sklearn.preprocessing import MinMaxScaler # max min(0-1) def norm(train, test): normalizer = MinMaxScaler(feature_range=(0, 1)).fit(train) # scale training data to [0,1] range train_ret = normalizer.transform(train) test_ret = normalizer.transform(test) return train_ret, test_ret # downsample by 10 def downsample(data, labels, down_len): np_data = np.array(data) np_labels = np.array(labels) orig_len, col_num = np_data.shape down_time_len = orig_len // down_len np_data = np_data.transpose() d_data = np_data[:, :down_time_len*down_len].reshape(col_num, -1, down_len) d_data = np.median(d_data, axis=2).reshape(col_num, -1) d_labels = np_labels[:down_time_len*down_len].reshape(-1, down_len) # if exist anomalies, then this sample is abnormal d_labels = np.round(np.max(d_labels, axis=1)) d_data = d_data.transpose() return d_data.tolist(), d_labels.tolist() def main(): test = pd.read_csv('./swat_test.csv', index_col=0) train = pd.read_csv('./swat_train.csv', index_col=0) test = test.iloc[:, 1:] train = train.iloc[:, 1:] train = train.fillna(train.mean()) test = test.fillna(test.mean()) train = train.fillna(0) test = test.fillna(0) # trim column names train = train.rename(columns=lambda x: x.strip()) test = test.rename(columns=lambda x: x.strip()) # print(len(test.columns),test.columns) # print(len(train.columns),train.columns) train_labels = train.attack test_labels = test.attack train = train.drop(columns=['attack']) test = test.drop(columns=['attack']) x_train, x_test = norm(train.values, test.values) for i, col in enumerate(train.columns): train.loc[:, col] = x_train[:, i] test.loc[:, col] = x_test[:, i] d_train_x, d_train_labels = downsample(train.values, train_labels, 10) d_test_x, d_test_labels = downsample(test.values, test_labels, 10) train_df = pd.DataFrame(d_train_x, columns = train.columns) test_df = pd.DataFrame(d_test_x, columns = test.columns) test_df['attack'] = d_test_labels train_df['attack'] = d_train_labels train_df = train_df.iloc[2160:] # print(train_df.values.shape) # print(test_df.values.shape) train_df.to_csv('./train.csv') test_df.to_csv('./test.csv') f = open('./list.txt', 'w') for col in train.columns: f.write(col+'\n') f.close() if __name__ == '__main__': main()