import dgl import dgl.nn.pytorch as dglnn import torch import torch.nn as nn import torch.nn.functional as F class GCNClassifier(nn.Module): """ 两层GCN+最大池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes): super(GCNClassifier, self).__init__() self.conv1 = dglnn.GraphConv(in_dim, hidden_dim) self.conv2 = dglnn.GraphConv(hidden_dim, hidden_dim) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): h = F.relu(self.conv1(g, h)) h = F.relu(self.conv2(g, h)) h = self.pool(g, h) return self.classify(h) # with g.local_scope(): # g.ndata['h'] = h # hg = dgl.mean_nodes(g, 'h') # return self.classify(hg) class RGCNMSL(nn.Module): """ 多任务学习:微服务组定位及故障分类"联合训练" """ def __init__(self, in_dim, hidden_dim, out_dim1, out_dim2, etype): super(RGCNMSL, self).__init__() self.etype = etype n_rels = len(set([e.item() for e in etype])) self.conv1 = dglnn.RelGraphConv(in_dim, hidden_dim, n_rels) self.conv2 = dglnn.RelGraphConv(hidden_dim, hidden_dim, n_rels) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() # self.pool = dglnn.SortPooling(k=2) self.cls1 = nn.Linear(hidden_dim, out_dim1) self.cls2 = nn.Linear(hidden_dim, out_dim2) def forward(self, g, h): etype = self.etype.repeat((g.num_edges() // len(self.etype))) h = F.relu(self.conv1(g, h, etype)) h = F.relu(self.conv2(g, h, etype)) h = self.pool(g, h) return self.cls1(h), self.cls2(h) def get_embeds(self , g, h): etype = self.etype.repeat((g.num_edges() // len(self.etype))) h = F.relu(self.conv1(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) h = F.relu(self.conv2(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) # h = self.pool(g, h) return h class RGCNClassifier(nn.Module): """ 两层RGCN+最大池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes, etype): super(RGCNClassifier, self).__init__() self.etype = etype n_rels = len(set([e.item() for e in etype])) self.conv1 = dglnn.RelGraphConv(in_dim, hidden_dim, n_rels) self.conv2 = dglnn.RelGraphConv(hidden_dim, hidden_dim, n_rels) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() # self.pool = dglnn.SortPooling(k=2) self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): etype = self.etype.repeat((g.num_edges() // len(self.etype))) h = F.relu(self.conv1(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) h = F.relu(self.conv2(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) h = self.pool(g, h) return self.classify(h) # with g.local_scope(): # g.ndata['h'] = h # hg = dgl.mean_nodes(g, 'h') # return self.classify(hg) def get_embeds(self , g, h, pool=False): etype = self.etype.repeat((g.num_edges() // len(self.etype))) h = F.relu(self.conv1(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) h = F.relu(self.conv2(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) if pool: h = self.pool(g, h) return h class RGCNv2Classifier(nn.Module): """ 两层RGCN+最大池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes, etype): super(RGCNv2Classifier, self).__init__() self.etype = etype n_rels = len(set([e.item() for e in etype])) self.conv1 = dglnn.RelGraphConv(in_dim, hidden_dim, n_rels) self.conv2 = dglnn.RelGraphConv(hidden_dim, hidden_dim, n_rels) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.cls1 = nn.Linear(hidden_dim, n_classes) # self.cls2 = nn.Linear(hidden_dim//2, n_classes) def forward(self, g, h): etype = self.etype.repeat((g.num_edges() // len(self.etype))) h = F.relu(self.conv1(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) h = F.relu(self.conv2(g, h, etype)) # h = F.dropout(h, p=0.5, training=True) h = self.pool(g, h) h = self.cls1(h) # h = self.cls2(h) # h = self.cls3(h) return h class GATClassifier(nn.Module): """ 两层GAT(第一层GAT不同注意力头的输出之间是拼接操作;第二层是求平均操作)+平均池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes, num_heads): super(GATClassifier, self).__init__() self.conv1 = dglnn.GATConv(in_dim, hidden_dim, num_heads=num_heads, activation=F.relu) # F.relu self.conv2 = dglnn.GATConv(hidden_dim*num_heads, hidden_dim, num_heads=num_heads, activation=F.relu) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): h = self.conv1(g, h) hh = torch.zeros(h.shape[0], h.shape[1]*h.shape[2]) # 中间层多头特征拼接 for i in range(h.shape[0]): hh[i] = torch.cat([t for t in h[i]]) h = self.conv2(g, hh) # 最后一层多头特征取平均值 h = torch.mean(h, dim=1) h = self.pool(g, h) return self.classify(h) def get_embeds(self , g, h, pool=False): h = F.relu(self.conv1(g, h)) # h = F.dropout(h, p=0.5, training=True) h = F.relu(self.conv2(g, h)) # h = F.dropout(h, p=0.5, training=True) if pool: h = self.pool(g, h) return h class SAGEClassifier(nn.Module): """ 两层SAGEConv+最大池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes): super(SAGEClassifier, self).__init__() self.conv1 = dglnn.SAGEConv(in_dim, hidden_dim, 'lstm', activation=F.relu) # mean, gcn, pool, lstm self.conv2 = dglnn.SAGEConv(hidden_dim, hidden_dim, 'lstm', activation=F.relu) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): h = self.conv1(g, h) h = self.conv2(g, h) h = self.pool(g, h) return self.classify(h) class TAGClassifier(nn.Module): """ 两层TAGConv+最大池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes): super(TAGClassifier, self).__init__() self.conv1 = dglnn.TAGConv(in_dim, hidden_dim, activation=F.relu) self.conv2 = dglnn.TAGConv(hidden_dim, hidden_dim, activation=F.relu) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): h = self.conv1(g, h) h = self.conv2(g, h) h = self.pool(g, h) return self.classify(h) def get_embeds(self , g, h, pool=False): h = self.conv1(g, h) # h = F.dropout(h, p=0.5, training=True) h = self.conv2(g, h) # h = F.dropout(h, p=0.5, training=True) if pool: h = self.pool(g, h) return h class GATv2Classifier(nn.Module): """ 两层GATv2+平均池化+线性分类器 """ def __init__(self, in_dim, hidden_dim, n_classes, num_heads): super(GATv2Classifier, self).__init__() self.conv1 = dglnn.GATv2Conv(in_dim, hidden_dim, num_heads=num_heads, activation=F.relu) # F.relu self.conv2 = dglnn.GATv2Conv(hidden_dim*num_heads, hidden_dim, num_heads=num_heads, activation=F.relu) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): h = self.conv1(g, h) hh = torch.zeros(h.shape[0], h.shape[1]*h.shape[2]) # 中间层多头特征拼接 for i in range(h.shape[0]): hh[i] = torch.cat([t for t in h[i]]) h = self.conv2(g, hh) # 最后一层多头特征取平均值 h = torch.mean(h, dim=1) h = self.pool(g, h) return self.classify(h) class LinearClassifier(nn.Module): def __init__(self, in_dim, hidden_dim, n_classes): super(LinearClassifier, self).__init__() # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() # self.linear1 = nn.Linear(in_dim, hidden_dim) # self.linear2 = nn.Linear(hidden_dim, hidden_dim) # self.classify = nn.Linear(hidden_dim, n_classes) self.classify = nn.Linear(in_dim, n_classes) def forward(self, g, h): h = self.pool(g, h) # h = F.relu(self.linear1(h)) # h = F.relu(self.linear2(h)) return self.classify(h) class SGCCClassifier(nn.Module): def __init__(self, in_dim, hidden_dim, n_classes): super(SGCCClassifier, self).__init__() self.conv1 = dglnn.SGConv(in_dim, hidden_dim) self.conv2 = dglnn.SGConv(hidden_dim, hidden_dim) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) def forward(self, g, h): h = F.relu(self.conv1(g, h)) h = F.relu(self.conv2(g, h)) h = self.pool(g, h) return self.classify(h) class ChebClassifier(nn.Module): def __init__(self, in_dim, hidden_dim, n_classes, k=2, compute_lambda_max=False): super(ChebClassifier, self).__init__() self.conv1 = dglnn.ChebConv(in_dim, hidden_dim, k, activation=F.relu) self.conv2 = dglnn.ChebConv(hidden_dim, hidden_dim, k, activation=F.relu) # self.pool = dglnn.AvgPooling() self.pool = dglnn.MaxPooling() self.classify = nn.Linear(hidden_dim, n_classes) self.lambda_max = None self.compute_lambda_max = compute_lambda_max def forward(self, g, h): if self.compute_lambda_max: # self.lambda_max = dgl.laplacian_lambda_max(g) if self.lambda_max is None: self.lambda_max = dgl.laplacian_lambda_max(g) else: self.labda_max = 2 try: h = self.conv1(g, h, self.lambda_max) except: self.lambda_max = dgl.laplacian_lambda_max(g) h = self.conv1(g, h, self.lambda_max) h = self.conv2(g, h, self.lambda_max) h = self.pool(g, h) return self.classify(h)