# Getting Started ## Environment Python 3.7.13, PyTorch 1.10.0, scikit-learn 1.0.2, fastText 0.9.2, and DGL 0.9.2 are suggested. ## Dataset D1: https://github.com/CloudWise-OpenSource/GAIA-DataSet D1 contains two datasets: MicroSS and Companion Data. We use MicroSS, for it provides trace, log, and metric at the same time. ## Demo We provide a demo. Please run: ``` python main.py --config gaia_config.yaml ``` ## Parameter Description in the Demo ### fastText \& Instance Embedding * `vector_dim`: The dimension of event embedding vectors. (default: 100) * `sample_count`: The number of samples per type after data augmentation. (default: 1000) * `edit_count`: The number of events modified per sample during data augmentation. (default: 1) * `minCount`: The minimum number of occurrences of the event (events that occur less than this number are ignored). (default: 1) ### DGL * `epoch`: Training rounds. (default: 6000) * `batch_size`: The number of samples contained in a batch of data. (default: 1000) * `win_size`: The length of the judgment window for ending training early. (default: 10) * `win_threshole`: The thresh for ending training early. (default: 0.0001) * `lr`: The learning rate. (default: 0.001)